首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In studies with recurrent event endpoints, misspecified assumptions of event rates or dispersion can lead to underpowered trials or overexposure of patients. Specification of overdispersion is often a particular problem as it is usually not reported in clinical trial publications. Changing event rates over the years have been described for some diseases, adding to the uncertainty in planning. To mitigate the risks of inadequate sample sizes, internal pilot study designs have been proposed with a preference for blinded sample size reestimation procedures, as they generally do not affect the type I error rate and maintain trial integrity. Blinded sample size reestimation procedures are available for trials with recurrent events as endpoints. However, the variance in the reestimated sample size can be considerable in particular with early sample size reviews. Motivated by a randomized controlled trial in paediatric multiple sclerosis, a rare neurological condition in children, we apply the concept of blinded continuous monitoring of information, which is known to reduce the variance in the resulting sample size. Assuming negative binomial distributions for the counts of recurrent relapses, we derive information criteria and propose blinded continuous monitoring procedures. The operating characteristics of these are assessed in Monte Carlo trial simulations demonstrating favourable properties with regard to type I error rate, power, and stopping time, ie, sample size.  相似文献   

2.
In 2008, this group published a paper on approaches for two‐stage crossover bioequivalence (BE) studies that allowed for the reestimation of the second‐stage sample size based on the variance estimated from the first‐stage results. The sequential methods considered used an assumed GMR of 0.95 as part of the method for determining power and sample size. This note adds results for an assumed GMR = 0.90. Two of the methods recommended for GMR = 0.95 in the earlier paper have some unacceptable increases in Type I error rate when the GMR is changed to 0.90. If a sponsor wants to assume 0.90 for the GMR, Method D is recommended. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Sample size calculations in clinical trials need to be based on profound parameter assumptions. Wrong parameter choices may lead to too small or too high sample sizes and can have severe ethical and economical consequences. Adaptive group sequential study designs are one solution to deal with planning uncertainties. Here, the sample size can be updated during an ongoing trial based on the observed interim effect. However, the observed interim effect is a random variable and thus does not necessarily correspond to the true effect. One way of dealing with the uncertainty related to this random variable is to include resampling elements in the recalculation strategy. In this paper, we focus on clinical trials with a normally distributed endpoint. We consider resampling of the observed interim test statistic and apply this principle to several established sample size recalculation approaches. The resulting recalculation rules are smoother than the original ones and thus the variability in sample size is lower. In particular, we found that some resampling approaches mimic a group sequential design. In general, incorporating resampling of the interim test statistic in existing sample size recalculation rules results in a substantial performance improvement with respect to a recently published conditional performance score.  相似文献   

4.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well.  相似文献   

5.
Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2‐arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size.  相似文献   

6.
The internal pilot study design allows for modifying the sample size during an ongoing study based on a blinded estimate of the variance thus maintaining the trial integrity. Various blinded sample size re‐estimation procedures have been proposed in the literature. We compare the blinded sample size re‐estimation procedures based on the one‐sample variance of the pooled data with a blinded procedure using the randomization block information with respect to bias and variance of the variance estimators, and the distribution of the resulting sample sizes, power, and actual type I error rate. For reference, sample size re‐estimation based on the unblinded variance is also included in the comparison. It is shown that using an unbiased variance estimator (such as the one using the randomization block information) for sample size re‐estimation does not guarantee that the desired power is achieved. Moreover, in situations that are common in clinical trials, the variance estimator that employs the randomization block length shows a higher variability than the simple one‐sample estimator and in turn the sample size resulting from the related re‐estimation procedure. This higher variability can lead to a lower power as was demonstrated in the setting of noninferiority trials. In summary, the one‐sample estimator obtained from the pooled data is extremely simple to apply, shows good performance, and is therefore recommended for application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
One of the most important steps in the design of a pharmaceutical clinical trial is the estimation of the sample size. For a superiority trial the sample size formula (to achieve a stated power) would be based on a given clinically meaningful difference and a value for the population variance. The formula is typically used as though this population variance is known whereas in reality it is unknown and is replaced by an estimate with its associated uncertainty. The variance estimate would be derived from an earlier similarly designed study (or an overall estimate from several previous studies) and its precision would depend on its degrees of freedom. This paper provides a solution for the calculation of sample sizes that allows for the imprecision in the estimate of the sample variance and shows how traditional formulae give sample sizes that are too small since they do not allow for this uncertainty with the deficiency being more acute with fewer degrees of freedom. It is recommended that the methodology described in this paper should be used when the sample variance has less than 200 degrees of freedom.  相似文献   

8.
An estimated sample size is a function of three components: the required power, the predetermined Type I error rate, and the specified effect size. For Normal data the standardized effect size is taken as the difference between two means divided by an estimate of the population standard deviation. However, in early phase trials one may not have a good estimate of the population variance as it is often based on the results of a few relatively small trials. The imprecision of this estimate should be taken into account in sample size calculations. When estimating a trial sample size this paper recommends that one should investigate the sensitivity of the trial to the assumptions made about the variance and consider being adaptive in one's trial design. Copyright © 2004 John Wiley & Sons Ltd.  相似文献   

9.
Prior information is often incorporated informally when planning a clinical trial. Here, we present an approach on how to incorporate prior information, such as data from historical clinical trials, into the nuisance parameter–based sample size re‐estimation in a design with an internal pilot study. We focus on trials with continuous endpoints in which the outcome variance is the nuisance parameter. For planning and analyzing the trial, frequentist methods are considered. Moreover, the external information on the variance is summarized by the Bayesian meta‐analytic‐predictive approach. To incorporate external information into the sample size re‐estimation, we propose to update the meta‐analytic‐predictive prior based on the results of the internal pilot study and to re‐estimate the sample size using an estimator from the posterior. By means of a simulation study, we compare the operating characteristics such as power and sample size distribution of the proposed procedure with the traditional sample size re‐estimation approach that uses the pooled variance estimator. The simulation study shows that, if no prior‐data conflict is present, incorporating external information into the sample size re‐estimation improves the operating characteristics compared to the traditional approach. In the case of a prior‐data conflict, that is, when the variance of the ongoing clinical trial is unequal to the prior location, the performance of the traditional sample size re‐estimation procedure is in general superior, even when the prior information is robustified. When considering to include prior information in sample size re‐estimation, the potential gains should be balanced against the risks.  相似文献   

10.
To deal with high placebo response in clinical trials for psychiatric and other diseases, different enrichment designs, such as the sequential parallel design, two‐way enriched design, and sequential enriched design, have been proposed and implemented recently. Depending on the historical trial information and the trial sponsors' resources, detailed design elements are needed for determining which design to adopt. To assist in making more suitable decisions, we perform evaluations for selecting required design elements in terms of power optimization and sample size planning. We also discuss the implementation of the interim analysis related to its applicability.  相似文献   

11.
In group sequential clinical trials, there are several sample size re-estimation methods proposed in the literature that allow for change of sample size at the interim analysis. Most of these methods are based on either the conditional error function or the interim effect size. Our simulation studies compared the operating characteristics of three commonly used sample size re-estimation methods, Chen et al. (2004), Cui et al. (1999), and Muller and Schafer (2001). Gao et al. (2008) extended the CDL method and provided an analytical expression of lower and upper threshold of conditional power where the type I error is preserved. Recently, Mehta and Pocock (2010) extensively discussed that the real benefit of the adaptive approach is to invest the sample size resources in stages and increasing the sample size only if the interim results are in the so called “promising zone” which they define in their article. We incorporated this concept in our simulations while comparing the three methods. To test the robustness of these methods, we explored the impact of incorrect variance assumption on the operating characteristics. We found that the operating characteristics of the three methods are very comparable. In addition, the concept of promising zone, as suggested by MP, gives the desired power and smaller average sample size, and thus increases the efficiency of the trial design.  相似文献   

12.
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.  相似文献   

13.
In clinical trials with binary endpoints, the required sample size does not depend only on the specified type I error rate, the desired power and the treatment effect but also on the overall event rate which, however, is usually uncertain. The internal pilot study design has been proposed to overcome this difficulty. Here, nuisance parameters required for sample size calculation are re-estimated during the ongoing trial and the sample size is recalculated accordingly. We performed extensive simulation studies to investigate the characteristics of the internal pilot study design for two-group superiority trials where the treatment effect is captured by the relative risk. As the performance of the sample size recalculation procedure crucially depends on the accuracy of the applied sample size formula, we firstly explored the precision of three approximate sample size formulae proposed in the literature for this situation. It turned out that the unequal variance asymptotic normal formula outperforms the other two, especially in case of unbalanced sample size allocation. Using this formula for sample size recalculation in the internal pilot study design assures that the desired power is achieved even if the overall rate is mis-specified in the planning phase. The maximum inflation of the type I error rate observed for the internal pilot study design is small and lies below the maximum excess that occurred for the fixed sample size design.  相似文献   

14.
Traditionally, in clinical development plan, phase II trials are relatively small and can be expected to result in a large degree of uncertainty in the estimates based on which Phase III trials are planned. Phase II trials are also to explore appropriate primary efficacy endpoint(s) or patient populations. When the biology of the disease and pathogenesis of disease progression are well understood, the phase II and phase III studies may be performed in the same patient population with the same primary endpoint, e.g. efficacy measured by HbA1c in non-insulin dependent diabetes mellitus trials with treatment duration of at least three months. In the disease areas that molecular pathways are not well established or the clinical outcome endpoint may not be observed in a short-term study, e.g. mortality in cancer or AIDS trials, the treatment effect may be postulated through use of intermediate surrogate endpoint in phase II trials. However, in many cases, we generally explore the appropriate clinical endpoint in the phase II trials. An important question is how much of the effect observed in the surrogate endpoint in the phase II study can be translated into the clinical effect in the phase III trial. Another question is how much of the uncertainty remains in phase III trials. In this work, we study the utility of adaptation by design (not by statistical test) in the sense of adapting the phase II information for planning the phase III trials. That is, we investigate the impact of using various phase II effect size estimates on the sample size planning for phase III trials. In general, if the point estimate of the phase II trial is used for planning, it is advisable to size the phase III trial by choosing a smaller alpha level or a higher power level. The adaptation via using the lower limit of the one standard deviation confidence interval from the phase II trial appears to be a reasonable choice since it balances well between the empirical power of the launched trials and the proportion of trials not launched if a threshold lower than the true effect size of phase III trial can be chosen for determining whether the phase III trial is to be launched.  相似文献   

15.
Sample size reestimation in a crossover, bioequivalence study can be a useful adaptive design tool, particularly when the intrasubject variability of the drug formulation under investigation is not well understood. When sample size reestimation is done based on an interim estimate of the intrasubject variability and bioequivalence is tested using the pooled estimate of intrasubject variability, type 1 error inflation will occur. Type 1 error inflation is caused by the pooled estimate being a biased estimator of the intrasubject variability. The type 1 error inflation and bias of the pooled estimator of variability are well characterized in the setting of a two‐arm, parallel study. The purpose of this work is to extend this characterization to the setting of a crossover, bioequivalence study with sample size reestimation and to propose an estimator of the intrasubject variability that will prevent type 1 error inflation.  相似文献   

16.
Bioequivalence (BE) studies are designed to show that two formulations of one drug are equivalent and they play an important role in drug development. When in a design stage, it is possible that there is a high degree of uncertainty on variability of the formulations and the actual performance of the test versus reference formulation. Therefore, an interim look may be desirable to stop the study if there is no chance of claiming BE at the end (futility), or claim BE if evidence is sufficient (efficacy), or adjust the sample size. Sequential design approaches specially for BE studies have been proposed previously in publications. We applied modification to the existing methods focusing on simplified multiplicity adjustment and futility stopping. We name our method modified sequential design for BE studies (MSDBE). Simulation results demonstrate comparable performance between MSDBE and the original published methods while MSDBE offers more transparency and better applicability. The R package MSDBE is available at https://sites.google.com/site/modsdbe/ . Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In clinical trials with survival data, investigators may wish to re-estimate the sample size based on the observed effect size while the trial is ongoing. Besides the inflation of the type-I error rate due to sample size re-estimation, the method for calculating the sample size in an interim analysis should be carefully considered because the data in each stage are mutually dependent in trials with survival data. Although the interim hazard estimate is commonly used to re-estimate the sample size, the estimate can sometimes be considerably higher or lower than the hypothesized hazard by chance. We propose an interim hazard ratio estimate that can be used to re-estimate the sample size under those circumstances. The proposed method was demonstrated through a simulation study and an actual clinical trial as an example. The effect of the shape parameter for the Weibull survival distribution on the sample size re-estimation is presented.  相似文献   

18.
19.
ABSTRACT

Recently, sponsors and regulatory authorities pay much attention on the multiregional trial because it can shorten the drug lag or the time lag for approval, simultaneous drug development, submission, and approval in the world. However, many studies have shown that genetic determinants may mediate variability among persons in response to a drug. Thus, some therapeutics benefit part of treated patients. It means that the assumption of homogeneous effect size is not suitable for multiregional trials. In this paper, we conduct the sample size determination of a multiregional clinical trial calculated by fixed effect and random effect under the assumption of heterogeneous effect size. The performances of fixed effect and random effect on allocating sample size on a specific region are compared by statistical criteria for consistency between the region of interest and overall results.  相似文献   

20.
When designing a clinical trial an appropriate justification for the sample size should be provided in the protocol. However, there are a number of settings when undertaking a pilot trial when there is no prior information to base a sample size on. For such pilot studies the recommendation is a sample size of 12 per group. The justifications for this sample size are based on rationale about feasibility; precision about the mean and variance; and regulatory considerations. The context of the justifications are that future studies will use the information from the pilot in their design. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号