首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this article, we propose the threshold vector autoregressive moving average model (TVARMA). It is a multivariate nonlinear time series model characterized by two or more regimes that follow a vector ARMA structure and where the switching among them is regulated by a latent variable. The TVARMA model represents a generalization of some nonlinear models proposed in the literature and shows interesting features that are explored. The condition for the strong and weak stationarity of the TVARMA model are presented and the moments up to order two of the process are derived.  相似文献   

2.
We examine moving average (MA) filters for estimating the integrated variance (IV) of a financial asset price in a framework where high-frequency price data are contaminated with market microstructure noise. We show that the sum of squared MA residuals must be scaled to enable a suitable estimator of IV. The scaled estimator is shown to be consistent, first-order efficient, and asymptotically Gaussian distributed about the integrated variance under restrictive assumptions. Under more plausible assumptions, such as time-varying volatility, the MA model is misspecified. This motivates an extensive simulation study of the merits of the MA-based estimator under misspecification. Specifically, we consider nonconstant volatility combined with rounding errors and various forms of dependence between the noise and efficient returns. We benchmark the scaled MA-based estimator to subsample and realized kernel estimators and find that the MA-based estimator performs well despite the misspecification.  相似文献   

3.
We examine moving average (MA) filters for estimating the integrated variance (IV) of a financial asset price in a framework where high-frequency price data are contaminated with market microstructure noise. We show that the sum of squared MA residuals must be scaled to enable a suitable estimator of IV. The scaled estimator is shown to be consistent, first-order efficient, and asymptotically Gaussian distributed about the integrated variance under restrictive assumptions. Under more plausible assumptions, such as time-varying volatility, the MA model is misspecified. This motivates an extensive simulation study of the merits of the MA-based estimator under misspecification. Specifically, we consider nonconstant volatility combined with rounding errors and various forms of dependence between the noise and efficient returns. We benchmark the scaled MA-based estimator to subsample and realized kernel estimators and find that the MA-based estimator performs well despite the misspecification.  相似文献   

4.
In this paper, we propose and study a general class of Gaussian semiparametric estimators (GSE) of the fractional differencing parameter in the context of long-range dependent multivariate time series. We establish large sample properties of the estimator without assuming Gaussianity. The class of models considered here satisfies simple conditions on the spectral density function, restricted to a small neighbourhood of the zero frequency and includes important class of vector autoregressive fractionally integrated moving average processes. We also present a simulation study to assess the finite sample properties of the proposed estimator based on a smoothed version of the GSE which supports its competitiveness.  相似文献   

5.
We discuss posterior sampling for two distinct multivariate generalisations of the univariate autoregressive integrated moving average (ARIMA) model with fractional integration. The existing approach to Bayesian estimation, introduced by Ravishanker & Ray, claims to provide a posterior‐sampling algorithm for fractionally integrated vector autoregressive moving averages (FIVARMAs). We show that this algorithm produces posterior draws for vector autoregressive fractionally integrated moving averages (VARFIMAs), a model of independent interest that has not previously received attention in the Bayesian literature.  相似文献   

6.
In this note we examine the sense in which Chipman's (1964) minimum average risk linear (MARL) estimator can be extended to cases where a prior probability distribution on B in the linear model Y = XB + E is proper only on a set of linear combinations of having a smaller dimension than the dimension of the B parameter space. We define the estimator that can be considered MARL in the class of estimators for which the average risk matrix is defined. The MARL-type estimator then becomes operational in cases where there is ignorance about one or more dimensions of the parameter space.  相似文献   

7.
We Consider the generalized multivariate linear model and assume the covariance matrix of the p x 1 vector of responses on a given individual can be represented in the general linear structure form described by Anderson (1973). The effects of the use of estimates of the parameters of the covariance matrix on the generalized least squares estimator of the regression coefficients and on the prediction of a portion of a future vector, when only the first portion of the vector has been observed, are investigated. Approximations are derived for the covariance matrix of the generalized least squares estimator and for the mean square error matrix of the usual predictor, for the practical case where estimated parameters are used.  相似文献   

8.
We review the Fisher scoring and EM algorithms for incomplete multivariate data from an estimating function point of view, and examine the corresponding quasi-score functions under second-moment assumptions. A bias-corrected REML-type estimator for the covariance matrix is derived, and the Fisher, Godambe and empirical sandwich information matrices are compared. We make a numerical investigation of the two algorithms, and compare with a hybrid algorithm, where Fisher scoring is used for the mean vector and the EM algorithm for the covariance matrix.  相似文献   

9.
A onestep estimator, which is an approximation to the unconditional maximum likelihood estimator (MLE) of the coefficient matrices of a Gaussian vector autoregressive process is presented. The onestep estimator is easy to compute and can be computed using standard software. Unlike the computation of the unconditional MLE, the computation of the onestep estimator does not require any iterative optimization and the computation is numerically stable. In finite samples the onestep estimator generally has smaller mean square error than the ordinary least squares estimator. In a simple model, where the unconditional MLE can be computed, numerical investigation shows that the onestep estimator is slightly worse than the unconditional MLE in terms of mean square error but superior to the ordinary least squares estimator. The limiting distribution of the onestep estimator for processes with some unit roots is derived.  相似文献   

10.
The estimation of a multivariate function from a stationary m-dependent process is investigated, with a special focus on the case where m is large or unbounded. We develop an adaptive estimator based on wavelet methods. Under flexible assumptions on the nonparametric model, we prove the good performances of our estimator by determining sharp rates of convergence under two kinds of errors: the pointwise mean squared error and the mean integrated squared error. We illustrate our theoretical result by considering the multivariate density estimation problem, the derivatives density estimation problem, the density estimation problem in a GARCH-type model and the multivariate regression function estimation problem. The performance of proposed estimator has been shown by a numerical study for a simulated and real data sets.  相似文献   

11.
In this paper, a new hybrid model of vector autoregressive moving average (VARMA) models and Bayesian networks is proposed to improve the forecasting performance of multivariate time series. In the proposed model, the VARMA model, which is a popular linear model in time series forecasting, is specified to capture the linear characteristics. Then the errors of the VARMA model are clustered into some trends by K-means algorithm with Krzanowski–Lai cluster validity index determining the number of trends, and a Bayesian network is built to learn the relationship between the data and the trend of its corresponding VARMA error. Finally, the estimated values of the VARMA model are compensated by the probabilities of their corresponding VARMA errors belonging to each trend, which are obtained from the Bayesian network. Compared with VARMA models, the experimental results with a simulation study and two multivariate real-world data sets indicate that the proposed model can effectively improve the prediction performance.  相似文献   

12.
Shrinkage pretest nonparametric estimation of the location parameter vector in a multivariate regression model is considered when nonsample information (NSI) about the regression parameters is available. By using the quadratic risk criterion, the dominance of the pretest estimators over the usual estimators has been investigated. We demonstrate analytically and computationally that the proposed improved pretest estimator establishes a wider dominance range for the parameter under consideration than that of the usual pretest estimator in which it is superior over the unrestricted estimator.  相似文献   

13.
This paper analyzes the forecasting performance of an open economy dynamic stochastic general equilibrium (DSGE) model, estimated with Bayesian methods, for the Euro area during 1994Q1–2002Q4. We compare the DSGE model and a few variants of this model to various reduced-form forecasting models such as vector autoregressions (VARs) and vector error correction models (VECM), estimated both by maximum likelihood and two different Bayesian approaches, and traditional benchmark models, e.g., the random walk. The accuracy of point forecasts, interval forecasts and the predictive distribution as a whole are assessed in an out-of-sample rolling event evaluation using several univariate and multivariate measures. The results show that the open economy DSGE model compares well with more empirical models and thus that the tension between rigor and fit in older generations of DSGE models is no longer present. We also critically examine the role of Bayesian model probabilities and other frequently used low-dimensional summaries, e.g., the log determinant statistic, as measures of overall forecasting performance.  相似文献   

14.
Forecasting Performance of an Open Economy DSGE Model   总被引:1,自引:0,他引:1  
《Econometric Reviews》2007,26(2):289-328
This paper analyzes the forecasting performance of an open economy dynamic stochastic general equilibrium (DSGE) model, estimated with Bayesian methods, for the Euro area during 1994Q1-2002Q4. We compare the DSGE model and a few variants of this model to various reduced-form forecasting models such as vector autoregressions (VARs) and vector error correction models (VECM), estimated both by maximum likelihood and two different Bayesian approaches, and traditional benchmark models, e.g., the random walk. The accuracy of point forecasts, interval forecasts and the predictive distribution as a whole are assessed in an out-of-sample rolling event evaluation using several univariate and multivariate measures. The results show that the open economy DSGE model compares well with more empirical models and thus that the tension between rigor and fit in older generations of DSGE models is no longer present. We also critically examine the role of Bayesian model probabilities and other frequently used low-dimensional summaries, e.g., the log determinant statistic, as measures of overall forecasting performance.  相似文献   

15.
We consider a partially linear model in which the vector of coefficients β in the linear part can be partitioned as ( β 1, β 2) , where β 1 is the coefficient vector for main effects (e.g. treatment effect, genetic effects) and β 2 is a vector for ‘nuisance’ effects (e.g. age, laboratory). In this situation, inference about β 1 may benefit from moving the least squares estimate for the full model in the direction of the least squares estimate without the nuisance variables (Steinian shrinkage), or from dropping the nuisance variables if there is evidence that they do not provide useful information (pretesting). We investigate the asymptotic properties of Stein‐type and pretest semiparametric estimators under quadratic loss and show that, under general conditions, a Stein‐type semiparametric estimator improves on the full model conventional semiparametric least squares estimator. The relative performance of the estimators is examined using asymptotic analysis of quadratic risk functions and it is found that the Stein‐type estimator outperforms the full model estimator uniformly. By contrast, the pretest estimator dominates the least squares estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an absolute penalty‐type estimator for partially linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty‐type estimators. The comparison shows that the shrinkage method performs better than the absolute penalty‐type estimation method when the dimension of the β 2 parameter space is large.  相似文献   

16.
SUMMARY The autoregressive moving average process ARMA (p,q) observed with noise has another ARMA (p,k) representation, where k = max (p,q). Parameters for the ARMA (p,k) representation satisfy some non-linear restrictions. We develop restricted Newton-Raphson estimators of the ARMA (p,k) process which takes advantage of the information given in the non-linear restrictions. The asymptotic relative efficiency of the estimators indicates that the proposed restricted Newton-Raphson estimator is more efficient than the unrestricted Newton-Raphson estimator. In a Monte Carlo experiment, the proposed estimator is shown to perform better than the unrestricted estimator of the ARMA (p,k) process.  相似文献   

17.
A multivariate synthetic exponentially weighted moving average (MSEWMA) control chart is presented in this study. The MSEWMA control chart consists of a multivariate exponentially weighted moving average (MEWMA) control chart and a conforming run length control chart. The average run length of the MSEWMA control chart is obtained using a Markov chain approach. From the numerical comparisons, it is shown that the MSEWMA control chart is more efficient than the multivariate synthetic T 2 control chart and the MEWMA control chart for detecting shifts in the process mean vector.  相似文献   

18.
In this article, a semiparametric time‐varying nonlinear vector autoregressive (NVAR) model is proposed to model nonlinear vector time series data. We consider a combination of parametric and nonparametric estimation approaches to estimate the NVAR function for both independent and dependent errors. We use the multivariate Taylor series expansion of the link function up to the second order which has a parametric framework as a representation of the nonlinear vector regression function. After the unknown parameters are estimated by the maximum likelihood estimation procedure, the obtained NVAR function is adjusted by a nonparametric diagonal matrix, where the proposed adjusted matrix is estimated by the nonparametric kernel estimator. The asymptotic consistency properties of the proposed estimators are established. Simulation studies are conducted to evaluate the performance of the proposed semiparametric method. A real data example on short‐run interest rates and long‐run interest rates of United States Treasury securities is analyzed to demonstrate the application of the proposed approach. The Canadian Journal of Statistics 47: 668–687; 2019 © 2019 Statistical Society of Canada  相似文献   

19.
In this paper, the problem of estimating the mean vector under non-negative constraints on location vector of the multivariate normal distribution is investigated. The value of the wavelet threshold based on Stein''s unbiased risk estimators is calculated for the shrinkage estimator in restricted parameter space. We suppose that covariance matrix is unknown and we find the dominant class of shrinkage estimators under Balance loss function. The performance evaluation of the proposed class of estimators is checked through a simulation study by using risk and average mean square error values.  相似文献   

20.
This paper extends the partially adaptive method Phillips (1994) provided for linear models to nonlinear models. Asymptotic results are established under conditions general enough they cover both cross-sectional and time series applications. The sampling efficiency of the new estimator is illustrated in a small Monte Carlo study in which the parameters of an autoregressive moving average are estimated. The study indicates that, for non-normal distributions, the new estimator improves on the nonlinear least squares estimator in terms of efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号