首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thurstone scaling via binary response regression   总被引:1,自引:0,他引:1  
Thurstone scaling is a widely used tool in marketing research, as well as in areas of applied psychology. The positions of the compared items, or stimuli on a Thurstone scale are estimated by averaging the quantiles corresponding to frequencies of each stimulus’s preference over the other stimuli. We consider maximum likelihood estimation for Thurstone scaling that utilizes paired comparison data. From this perspective we obtain a binary response regression with a probit or logit link. In addition to the levels on a psychological scale, the suggested approach produces standard errors, t-statistics, and other characteristics of regression quality. This approach can help in both the theoretical interpretation and the practical application of Thurstone modeling.  相似文献   

2.
分位数回归技术综述   总被引:16,自引:0,他引:16  
普通最小二乘回归建立了在自变量X=x下因变量Y的条件均值与X的关系的线性模型。而分位数回归(Quantile Regression)则利用自变量X和因变量y的条件分位数进行建模。与普通的均值回归相比,它能充分反映自变量X对于因变量y的分布的位置、刻度和形状的影响,有着十分广泛的应用,尤其是对于一些非常关注尾部特征的情况。文章介绍了分位数回归的概念以及分位数回归的估计、检验和拟合优度,回顾了分位数回归的发展过程以及其在一些经济研究领域中的应用,最后做了总结。  相似文献   

3.
To detect the dependence on the covariates in the lower and upper tails of the response distribution, regression quantiles are very useful tools in linear model problems with univariate response. We consider here a notion of regression quantiles for problems with multivariate responses. The approach is based on minimizing a loss function equivalent to that in the case of univariate response. To construct an affine equivariant notion of multivariate regression quantiles, we have considered a transformation retransformation procedure based on ‘data-driven coordinate systems’. We indicate some algorithm to compute the proposed estimates and establish asymptotic normality for them. We also, suggest an adaptive procedure to select the optimal data-driven coordinate system. We discuss the performance of our estimates with the help of a finite sample simulation study and to illustrate our methodology, we analyzed an interesting data-set on blood pressures of a group of women and another one on the dependence of sales performances on creative test scores.  相似文献   

4.
In this article, we investigate the quantile regression analysis for semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. Due to the dependent censoring, the estimation of quantile regression coefficients on the non-terminal event becomes difficult. In order to handle this problem, we assume Archimedean Copula to specify the dependence of the non-terminal event and the terminal event. Portnoy [Censored regression quantiles. J Amer Statist Assoc. 2003;98:1001–1012] considered the quantile regression model under right-censoring data. We extend his approach to construct a weight function, and then impose the weight function to estimate the quantile regression parameter for the non-terminal event under semi-competing risks data. We also prove the consistency and asymptotic properties for the proposed estimator. According to the simulation studies, the performance of our proposed method is good. We also apply our suggested approach to analyse a real data.  相似文献   

5.
In this paper, we describe two computational methods for calculating the cumulative distribution function and the upper quantiles of the maximal difference between a Brownian bridge and its concave majorant. The first method has two different variants that are both based on a Monte Carlo approach, whereas the second uses the Gaver–Stehfest (GS) algorithm for the numerical inversion of the Laplace transform. If the former method is straightforward to implement, it is very much outperformed by the GS algorithm, which provides a very accurate approximation of the cumulative distribution as well as its upper quantiles. Our numerical work has a direct application in statistics: the maximal difference between a Brownian bridge and its concave majorant arises in connection with a nonparametric test for monotonicity of a density or regression curve on [0,1]. Our results can be used to construct very accurate rejection region for this test at a given asymptotic level.  相似文献   

6.
Quantile regression, including median regression, as a more completed statistical model than mean regression, is now well known with its wide spread applications. Bayesian inference on quantile regression or Bayesian quantile regression has attracted much interest recently. Most of the existing researches in Bayesian quantile regression focus on parametric quantile regression, though there are discussions on different ways of modeling the model error by a parametric distribution named asymmetric Laplace distribution or by a nonparametric alternative named scale mixture asymmetric Laplace distribution. This paper discusses Bayesian inference for nonparametric quantile regression. This general approach fits quantile regression curves using piecewise polynomial functions with an unknown number of knots at unknown locations, all treated as parameters to be inferred through reversible jump Markov chain Monte Carlo (RJMCMC) of Green (Biometrika 82:711–732, 1995). Instead of drawing samples from the posterior, we use regression quantiles to create Markov chains for the estimation of the quantile curves. We also use approximate Bayesian factor in the inference. This method extends the work in automatic Bayesian mean curve fitting to quantile regression. Numerical results show that this Bayesian quantile smoothing technique is competitive with quantile regression/smoothing splines of He and Ng (Comput. Stat. 14:315–337, 1999) and P-splines (penalized splines) of Eilers and de Menezes (Bioinformatics 21(7):1146–1153, 2005).  相似文献   

7.
This paper develops a varying-coefficient approach to the estimation and testing of regression quantiles under randomly truncated data. In order to handle the truncated data, the random weights are introduced and the weighted quantile regression (WQR) estimators for nonparametric functions are proposed. To achieve nice efficiency properties, we further develop a weighted composite quantile regression (WCQR) estimation method for nonparametric functions in varying-coefficient models. The asymptotic properties both for the proposed WQR and WCQR estimators are established. In addition, we propose a novel bootstrap-based test procedure to test whether the nonparametric functions in varying-coefficient quantile models can be specified by some function forms. The performance of the proposed estimators and test procedure are investigated through simulation studies and a real data example.  相似文献   

8.
This paper proposes a consistent parametric test of Granger-causality in quantiles. Although the concept of Granger-causality is defined in terms of the conditional distribution, most articles have tested Granger-causality using conditional mean regression models in which the causal relations are linear. Rather than focusing on a single part of the conditional distribution, we develop a test that evaluates nonlinear causalities and possible causal relations in all conditional quantiles, which provides a sufficient condition for Granger-causality when all quantiles are considered. The proposed test statistic has correct asymptotic size, is consistent against fixed alternatives, and has power against Pitman deviations from the null hypothesis. As the proposed test statistic is asymptotically nonpivotal, we tabulate critical values via a subsampling approach. We present Monte Carlo evidence and an application considering the causal relation between the gold price, the USD/GBP exchange rate, and the oil price.  相似文献   

9.
The authors discuss a general class of hierarchical ordinal regression models that includes both location and scale parameters, allows link functions to be selected adaptively as finite mixtures of normal cumulative distribution functions, and incorporates flexible correlation structures for the latent scale variables. Exploiting the well‐known correspondence between ordinal regression models and parametric ROC (Receiver Operating Characteristic) curves makes it possible to use a hierarchical ROC (HROC) analysis to study multilevel clustered data in diagnostic imaging studies. The authors present a Bayesian approach to model fitting using Markov chain Monte Carlo methods and discuss HROC applications to the analysis of data from two diagnostic radiology studies involving multiple interpreters.  相似文献   

10.
Small‐area estimation techniques have typically relied on plug‐in estimation based on models containing random area effects. More recently, regression M‐quantiles have been suggested for this purpose, thus avoiding conventional Gaussian assumptions, as well as problems associated with the specification of random effects. However, the plug‐in M‐quantile estimator for the small‐area mean can be shown to be the expected value of this mean with respect to a generally biased estimator of the small‐area cumulative distribution function of the characteristic of interest. To correct this problem, we propose a general framework for robust small‐area estimation, based on representing a small‐area estimator as a functional of a predictor of this small‐area cumulative distribution function. Key advantages of this framework are that it naturally leads to integrated estimation of small‐area means and quantiles and is not restricted to M‐quantile models. We also discuss mean squared error estimation for the resulting estimators, and demonstrate the advantages of our approach through model‐based and design‐based simulations, with the latter using economic data collected in an Australian farm survey.  相似文献   

11.
Quantile regression models are a powerful tool for studying different points of the conditional distribution of univariate response variables. Their multivariate counterpart extension though is not straightforward, starting with the definition of multivariate quantiles. We propose here a flexible Bayesian quantile regression model when the response variable is multivariate, where we are able to define a structured additive framework for all predictor variables. We build on previous ideas considering a directional approach to define the quantiles of a response variable with multiple outputs, and we define noncrossing quantiles in every directional quantile model. We define a Markov chain Monte Carlo (MCMC) procedure for model estimation, where the noncrossing property is obtained considering a Gaussian process design to model the correlation between several quantile regression models. We illustrate the results of these models using two datasets: one on dimensions of inequality in the population, such as income and health; the second on scores of students in the Brazilian High School National Exam, considering three dimensions for the response variable.  相似文献   

12.
A general nonparametric imputation procedure, based on kernel regression, is proposed to estimate points as well as set- and function-indexed parameters when the data are missing at random (MAR). The proposed method works by imputing a specific function of a missing value (and not the missing value itself), where the form of this specific function is dictated by the parameter of interest. Both single and multiple imputations are considered. The associated empirical processes provide the right tool to study the uniform convergence properties of the resulting estimators. Our estimators include, as special cases, the imputation estimator of the mean, the estimator of the distribution function proposed by Cheng and Chu [1996. Kernel estimation of distribution functions and quantiles with missing data. Statist. Sinica 6, 63–78], imputation estimators of a marginal density, and imputation estimators of regression functions.  相似文献   

13.
Populational conditional quantiles in terms of percentage α are useful as indices for identifying outliers. We propose a class of symmetric quantiles for estimating unknown nonlinear regression conditional quantiles. In large samples, symmetric quantiles are more efficient than regression quantiles considered by Koenker and Bassett (Econometrica 46 (1978) 33) for small or large values of α, when the underlying distribution is symmetric, in the sense that they have smaller asymptotic variances. Symmetric quantiles play a useful role in identifying outliers. In estimating nonlinear regression parameters by symmetric trimmed means constructed by symmetric quantiles, we show that their asymptotic variances can be very close to (or can even attain) the Cramer–Rao lower bound under symmetric heavy-tailed error distributions, whereas the usual robust and nonrobust estimators cannot.  相似文献   

14.
In this paper we consider the risk performances of some estimators for both location and scale parameters in a linear regression model under Inagaki’s loss function We prove that the pre-test estimator for location parameter is dominated by the Stein-rule estimator under Inagaki’s loss function when the distribution of error terms is expressed by the scale mixture of normal distribution and the variance of error terms is unknown.. It is an extension of the results in Nagata (1983) to our situation Also we perform numerical calculations to draw the shapes of the risks.  相似文献   

15.
ABSTRACT

A quantile autoregresive model is a useful extension of classical autoregresive models as it can capture the influences of conditioning variables on the location, scale, and shape of the response distribution. However, at the extreme tails, standard quantile autoregression estimator is often unstable due to data sparsity. In this article, assuming quantile autoregresive models, we develop a new estimator for extreme conditional quantiles of time series data based on extreme value theory. We build the connection between the second-order conditions for the autoregression coefficients and for the conditional quantile functions, and establish the asymptotic properties of the proposed estimator. The finite sample performance of the proposed method is illustrated through a simulation study and the analysis of U.S. retail gasoline price.  相似文献   

16.
This paper is a continuation of previous work concerning the estimation of tail-parameters under Type II censoring (Weissman 1978). The same estimation problem is considered here, this truip under Type I censoring. A sample of size n is censored below aE a given level x0it is assumed that che underlying distriibution .function (df)belogs to the domain of attraction of a known extreme-value distribution and that K - K(xo) , the number of observed values, remains finite as on - ∞ . We offer here estimators, which are asymptotically maximum likelihood estimators (MLE's), for quantiles associated with the tail of F such as location and scale parameters, quantiles and F(x) itself (for x in the tail). The results are applied to two illustrative examples.  相似文献   

17.
An empirical distribution function estimator for the difference of order statistics from two independent populations can be used for inference between quantiles from these populations. The inferential properties of the approach are evaluated in a simulation study where different sample sizes, theoretical distributions, and quantiles are studied. Small to moderate sample sizes, tail quantiles, and quantiles which do not coincide with the expectation of an order statistic are identified as problematic for appropriate Type I error control.  相似文献   

18.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

19.
We propose a flexible method to approximate the subjective cumulative distribution function of an economic agent about the future realization of a continuous random variable. The method can closely approximate a wide variety of distributions while maintaining weak assumptions on the shape of distribution functions. We show how moments and quantiles of general functions of the random variable can be computed analytically and/or numerically. We illustrate the method by revisiting the determinants of income expectations in the United States. A Monte Carlo analysis suggests that a quantile-based flexible approach can be used to successfully deal with censoring and possible rounding levels present in the data. Finally, our analysis suggests that the performance of our flexible approach matches that of a correctly specified parametric approach and is clearly better than that of a misspecified parametric approach.  相似文献   

20.
In this article, we investigate a new procedure for the estimation of a linear quantile regression with possibly right-censored responses. Contrary to the main literature on the subject, we propose in this context to circumvent the formulation of conditional quantiles through the so-called “check” loss function that stems from the influential work of Koenker and Bassett (1978). Instead, our suggestion is here to estimate the quantile coefficients by minimizing an alternative measure of distance. In fact, our approach could be qualified as a generalization in a parametric regression framework of the technique consisting in inverting the conditional distribution of the response given the covariates. This is motivated by the knowledge that the main literature for censored data already relies on some nonparametric conditional distribution estimation as well. The ideas of effective dimension reduction are then exploited in order to accommodate for higher dimensional settings as well in this context. Extensive numerical results then suggest that such an approach provides a strongly competitive procedure to the classical approaches based on the check function, in fact both for complete and censored observations. From a theoretical prospect, both consistency and asymptotic normality of the proposed estimator for linear regression are obtained under classical regularity conditions. As a by-product, several asymptotic results on some “double-kernel” version of the conditional Kaplan–Meier distribution estimator based on effective dimension reduction, and its corresponding density estimator, are also obtained and may be of interest on their own. A brief application of our procedure to quasar data then serves to further highlight the relevance of the latter for quantile regression estimation with censored data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号