首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed models are powerful tools for the analysis of clustered data and many extensions of the classical linear mixed model with normally distributed response have been established. As with all parametric (P) models, correctness of the assumed model is critical for the validity of the ensuing inference. An incorrectly specified P means model may be improved by using a local, or nonparametric (NP), model. Two local models are proposed by a pointwise weighting of the marginal and conditional variance–covariance matrices. However, NP models tend to fit to irregularities in the data and may provide fits with high variance. Model robust regression techniques estimate mean response as a convex combination of a P and a NP model fit to the data. It is a semiparametric method by which incomplete or incorrectly specified P models can be improved by adding an appropriate amount of the NP fit. We compare the approximate integrated mean square error of the P, NP, and mixed model robust methods via a simulation study and apply these methods to two real data sets: the monthly wind speed data from countries in Ireland and the engine speed data.  相似文献   

2.
A semiparametric logistic regression model is proposed in which its nonparametric component is approximated with fixed-knot cubic B-splines. To assess the linearity of the nonparametric component, we construct a penalized likelihood ratio test statistic. When the number of knots is fixed, the null distribution of the test statistic is shown to be asymptotically the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. We set the asymptotic null expectation of this test statistic equal to a value to determine the smoothing parameter value. Monte Carlo experiments are conducted to investigate the performance of the proposed test. Its practical use is illustrated with a real-life example.  相似文献   

3.
When spatial data are correlated, currently available data‐driven smoothing parameter selection methods for nonparametric regression will often fail to provide useful results. The authors propose a method that adjusts the generalized cross‐validation criterion for the effect of spatial correlation in the case of bivariate local polynomial regression. Their approach uses a pilot fit to the data and the estimation of a parametric covariance model. The method is easy to implement and leads to improved smoothing parameter selection, even when the covariance model is misspecified. The methodology is illustrated using water chemistry data collected in a survey of lakes in the Northeastern United States.  相似文献   

4.
Investigations of multivariate population are pretty common in applied researches, and the two-way crossed factorial design is a common design used at the exploratory phase in industrial applications. When assumptions such as multivariate normality and covariance homogeneity are violated, the conventional wisdom is to resort to nonparametric tests for hypotheses testing. In this paper we compare the performances, and in particular the power, of some nonparametric and semi-parametric methods that have been developed in recent years. Specifically, we examined resampling methods and robust versions of classical multivariate analysis of variance (MANOVA) tests. In a simulation study, we generate data sets with different configurations of factor''s effect, number of replicates, number of response variables under null hypothesis, and number of response variables under alternative hypothesis. The objective is to elicit practical advice and guides to practitioners regarding the sensitivity of the tests in the various configurations, the tradeoff between power and type I error, the strategic impact of increasing number of response variables, and the favourable performance of one test when the alternative is sparse. A real case study from an industrial engineering experiment in thermoformed packaging production is used to compare and illustrate the application of the various methods.  相似文献   

5.
Summary.  Spline-based approaches to non-parametric and semiparametric regression, as well as to regression of scalar outcomes on functional predictors, entail choosing a parameter controlling the extent to which roughness of the fitted function is penalized. We demonstrate that the equations determining two popular methods for smoothing parameter selection, generalized cross-validation and restricted maximum likelihood, share a similar form that allows us to prove several results which are common to both, and to derive a condition under which they yield identical values. These ideas are illustrated by application of functional principal component regression, a method for regressing scalars on functions, to two chemometric data sets.  相似文献   

6.
When modeling multilevel data, it is important to accurately represent the interdependence of observations within clusters. Ignoring data clustering may result in parameter misestimation. However, it is not well established to what degree parameter estimates are affected by model misspecification when applying missing data techniques (MDTs) to incomplete multilevel data. We compare the performance of three MDTs with incomplete hierarchical data. We consider the impact of imputation model misspecification on the quality of parameter estimates by employing multiple imputation under assumptions of a normal model (MI/NM) with two-level cross-sectional data when values are missing at random on the dependent variable at rates of 10%, 30%, and 50%. Five criteria are used to compare estimates from MI/NM to estimates from MI assuming a linear mixed model (MI/LMM) and maximum likelihood estimation to the same incomplete data sets. With 10% missing data (MD), techniques performed similarly for fixed-effects estimates, but variance components were biased with MI/NM. Effects of model misspecification worsened at higher rates of MD, with the hierarchical structure of the data markedly underrepresented by biased variance component estimates. MI/LMM and maximum likelihood provided generally accurate and unbiased parameter estimates but performance was negatively affected by increased rates of MD.  相似文献   

7.
For noninformative nonparametric estimation of finite population quantiles under simple random sampling, estimation based on the Polya posterior is similar to estimation based on the Bayesian approach developed by Ericson (J. Roy. Statist. Soc. Ser. B 31 (1969) 195) in that the Polya posterior distribution is the limit of Ericson's posterior distributions as the weight placed on the prior distribution diminishes. Furthermore, Polya posterior quantile estimates can be shown to be admissible under certain conditions. We demonstrate the admissibility of the sample median as an estimate of the population median under such a set of conditions. As with Ericson's Bayesian approach, Polya posterior-based interval estimates for population quantiles are asymptotically equivalent to the interval estimates obtained from standard frequentist approaches. In addition, for small to moderate sized populations, Polya posterior-based interval estimates for quantiles of a continuous characteristic of interest tend to agree with the standard frequentist interval estimates.  相似文献   

8.
This paper is concerned with testing that r random samples are all from the same population when the data are left (or right) censored. A statistic is developed which has elements of a goodness-of-fit statistic and of a modified Kruskal-Wallis statistic. The efficiency of this statistic relative to some other commonly used statistics is calculated. Some Monte Carlo comparisons are given.  相似文献   

9.
10.
In this article, we consider the efficient estimation of the semiparametric transformation model with doubly truncated data. We propose a two-step approach for obtaining the pseudo maximum likelihood estimators (PMLE) of regression parameters. In the first step, the truncation time distribution is estimated by the nonparametric maximum likelihood estimator (Shen, 2010a) when the distribution function K of the truncation time is unspecified or by the conditional maximum likelihood estimator (Bilker and Wang, 1996) when K is parameterized. In the second step, using the pseudo complete-data likelihood function with the estimated distribution of truncation time, we propose expectation–maximization algorithms for obtaining the PMLE. We establish the consistency of the PMLE. The simulation study indicates that the PMLE performs well in finite samples. The proposed method is illustrated using an AIDS data set.  相似文献   

11.
The purpose of this article is to use the empirical likelihood method to study the confidence regions construction for the parameters of interest in semiparametric model with linear process errors under martingale difference. It is shown that the adjusted empirical log-likelihood ratio at the true parameters is asymptotically chi-squared. A simulation study indicates that the adjusted empirical likelihood works better than a normal approximation-based approach.  相似文献   

12.
In this paper, we focus on the variable selection for the semiparametric regression model with longitudinal data when some covariates are measured with errors. A new bias-corrected variable selection procedure is proposed based on the combination of the quadratic inference functions and shrinkage estimations. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure with an application.  相似文献   

13.
The purpose of this article is to demonstrate the use of the quantile dispersion graphs (QDGs) approach for comparing candidate designs for generalized linear models in the presence of model misspecification in the linear predictor. The proposed design criterion is based on the mean-squared error of prediction which incorporates the prediction variance and the bias caused by fitting the wrong model. The method of kriging is used to estimate the unknown function assumed to be the cause of model misspecification. The QDGs approach is also useful in assessing the robustness of a given design to values of the unknown parameters in the linear predictor. Three numerical examples are presented to illustrate the application of the proposed methodology.  相似文献   

14.
15.
In recent years, the suggestion of combining models as an alternative to selecting a single model from a frequentist prospective has been advanced in a number of studies. In this article, we propose a new semiparametric estimator of regression coefficients, which is in the form of a feasible generalized ridge estimator by Hoerl and Kennard (1970b Hoerl, A. E., Kennard, R. W. (1970b). Ridge regression: Application to nonorthogonal problems. Technometrics 12(1):6982.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]) but with different biasing factors. We prove that after reparameterization such that the regressors are orthogonal, the generalized ridge estimator is algebraically identical to the model average estimator. Further, the biasing factors that determine the properties of both the generalized ridge and semiparametric estimators are directly linked to the weights used in model averaging. These are interesting results for the interpretations and applications of both semiparametric and ridge estimators. Furthermore, we demonstrate that these estimators based on model averaging weights can have properties superior to the well-known feasible generalized ridge estimator in a large region of the parameter space. Two empirical examples are presented.  相似文献   

16.
In a longitudinal study, an individual is followed up over a period of time. Repeated measurements on the response and some time-dependent covariates are taken at a series of sampling times. The sampling times are often irregular and depend on covariates. In this paper, we propose a sampling adjusted procedure for the estimation of the proportional mean model without having to specify a sampling model. Unlike existing procedures, the proposed method is robust to model misspecification of the sampling times. Large sample properties are investigated for the estimators of both regression coefficients and the baseline function. We show that the proposed estimation procedure is more efficient than the existing procedures. Large sample confidence intervals for the baseline function are also constructed by perturbing the estimation equations. A simulation study is conducted to examine the finite sample properties of the proposed estimators and to compare with some of the existing procedures. The method is illustrated with a data set from a recurrent bladder cancer study.  相似文献   

17.
We study model selection and model averaging in semiparametric partially linear models with missing responses. An imputation method is used to estimate the linear regression coefficients and the nonparametric function. We show that the corresponding estimators of the linear regression coefficients are asymptotically normal. Then a focused information criterion and frequentist model average estimators are proposed and their theoretical properties are established. Simulation studies are performed to demonstrate the superiority of the proposed methods over the existing strategies in terms of mean squared error and coverage probability. Finally, the approach is applied to a real data case.  相似文献   

18.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

19.
A failure model with damage accumulation is considered. Damages occur according to a Poisson process and they degenerate into failures in a random time. The rate of the Poisson process and the degeneration time distribution are unknown. Two sample populations are available: a sample of intervals between damages and a sample of degeneration times. The case of small samples is considered. The purpose is to estimate the expectation and the distribution of the number of damages and failures at time t. We consider the plug-in and resampling estimators of the above mentioned characteristics. The expectations and variances of the suggested estimators are investigated. The numerical examples show that the resampling estimator has some advantages.  相似文献   

20.
Efficient inference for regression models requires that the heteroscedasticity be taken into account. We consider statistical inference under heteroscedasticity in a semiparametric measurement error regression model, in which some covariates are measured with errors. This paper has multiple components. First, we propose a new method for testing the heteroscedasticity. The advantages of the proposed method over the existing ones are that it does not need any nonparametric estimation and does not involve any mismeasured variables. Second, we propose a new two-step estimator for the error variances if there is heteroscedasticity. Finally, we propose a weighted estimating equation-based estimator (WEEBE) for the regression coefficients and establish its asymptotic properties. Compared with existing estimators, the proposed WEEBE is asymptotically more efficient, avoids undersmoothing the regressor functions and requires less restrictions on the observed regressors. Simulation studies show that the proposed test procedure and estimators have nice finite sample performance. A real data set is used to illustrate the utility of our proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号