首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poisson log-linear regression is a popular model for count responses. We examine two popular extensions of this model – the generalized estimating equations (GEE) and the generalized linear mixed-effects model (GLMM) – to longitudinal data analysis and complement the existing literature on characterizing the relationship between the two dueling paradigms in this setting. Unlike linear regression, the GEE and the GLMM carry significant conceptual and practical implications when applied to modeling count data. Our findings shed additional light on the differences between the two classes of models when used for count data. Our considerations are demonstrated by both real study and simulated data.  相似文献   

2.
The benefits of adjusting for baseline covariates are not as straightforward with repeated binary responses as with continuous response variables. Therefore, in this study, we compared different methods for analyzing repeated binary data through simulations when the outcome at the study endpoint is of interest. Methods compared included chi‐square, Fisher's exact test, covariate adjusted/unadjusted logistic regression (Adj.logit/Unadj.logit), covariate adjusted/unadjusted generalized estimating equations (Adj.GEE/Unadj.GEE), covariate adjusted/unadjusted generalized linear mixed model (Adj.GLMM/Unadj.GLMM). All these methods preserved the type I error close to the nominal level. Covariate adjusted methods improved power compared with the unadjusted methods because of the increased treatment effect estimates, especially when the correlation between the baseline and outcome was strong, even though there was an apparent increase in standard errors. Results of the Chi‐squared test were identical to those for the unadjusted logistic regression. Fisher's exact test was the most conservative test regarding the type I error rate and also with the lowest power. Without missing data, there was no gain in using a repeated measures approach over a simple logistic regression at the final time point. Analysis of results from five phase III diabetes trials of the same compound was consistent with the simulation findings. Therefore, covariate adjusted analysis is recommended for repeated binary data when the study endpoint is of interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The generalized estimating equations (GEEs) and generalized linear mixed-effects model (GLMM) are the two most popular paradigms to extend models for cross-sectional data to a longitudinal setting. Although the two approaches yield well-interpreted models for continuous outcomes, it is quite a different story when applied to binomial responses. We discuss major modeling differences between the GEE- and GLMM-derived models by presenting new results regarding the model-driven differences. Our results show that GLMM induces some artifacts in the marginal models at assessment times, making it inappropriate when applied to such responses from real study data. The different interpretations of parameters resulting from the conceptual difference between the two modeling approaches also carry quite significant implications and ramifications with respect to data and power analyses. Although a special case involving a scale difference in parameters between GEE and GLMM has been noted in the literature, its implications in real data analysis has not been thoroughly addressed. Further, this special case has a very limited covariate structure and does not apply to most real studies, especially multi-center clinical trials. The new results presented fill a substantial gap in the literature regarding the model-driven differences between the two dueling paradigms.  相似文献   

4.
The generalized estimating equations (GEE) approach has attracted considerable interest for the analysis of correlated response data. This paper considers the model selection criterion based on the multivariate quasi‐likelihood (MQL) in the GEE framework. The GEE approach is closely related to the MQL. We derive a necessary and sufficient condition for the uniqueness of the risk function based on the MQL by using properties of differential geometry. Furthermore, we establish a formal derivation of model selection criterion as an asymptotically unbiased estimator of the prediction risk under this condition, and we explicitly take into account the effect of estimating the correlation matrix used in the GEE procedure.  相似文献   

5.
Generalized estimating equations (GEE) have become a popular method for marginal regression modelling of data that occur in clusters. Features of the GEE methodology are the use of a ‘working covariance’, an approximation to the underlying covariance, which is used to improve the efficiency in estimating the regression coefficients, and the ‘sandwich’ estimate of variance, which provides a way of consistently estimating their standard errors. These techniques have been extended to include estimating equations for the underlying correlation structure, both to improve the efficiency of the regression coefficient estimates and to provide estimates of correlations between units in a cluster, when these are of interest. If the mean structure is of primary interest, then a simpler set of equations (GEE1) can be used, whereas if the underlying covariance structure is of interest in its own right, the use of the more complex GEE2 estimating equations is often recommended. In this paper, we compare the effect of increasing the complexity of the ‘working covariances’ on the variance of the parameter estimates, as well as the mean-squared error of the ‘sandwich’ estimate of variance. We give asymptotic expressions for these variances and mean-squared error terms. We use these to study the behaviour of different variants of GEE1 and GEE2 when we change the number of clusters, the cluster size, and the within-cluster correlation. We conclude that the extra complexity of the full GEE2 approach is not usually justified if the mean structure is of primary interest.  相似文献   

6.
In this study, some methods suggested for binary repeated measures, namely, Weighted Least Squares (WLS), Generalized Estimating Equations (GEE), and Generalized Linear Mixed Models (GLMM) are compared with respect to power, type 1 error, and properties of estimates. The results indicate that with adequate sample size, no missing data, the only covariate being time effect, and a relatively limited number of time points, the WLS method performs well. The GEE approach performs well only for large sample sizes. The GLMM method is satisfactory with respect to type I error, but its estimates have poorer properties than the other methods.  相似文献   

7.
The generalized estimating equations (GEE) introduced by Liang and Zeger (Biometrika 73 (1986) 13–22) have been widely used over the past decade to analyze longitudinal data. The method uses a generalized quasi-score function estimate for the regression coefficients, and moment estimates for the correlation parameters. Recently, Crowder (Biometrika 82 (1995) 407–410) has pointed out some pitfalls with the estimation of the correlation parameters in the GEE method. In this paper we present a new method for estimating the correlation parameters which overcomes those pitfalls. For some commonly assumed correlation structures, we obtain unique feasible estimates for the correlation parameters. Large sample properties of our estimates are also established.  相似文献   

8.
In clinical trials with repeated measurements, the responses from each subject are measured multiple times during the study period. Two approaches have been widely used to assess the treatment effect, one that compares the rate of change between two groups and the other that tests the time-averaged difference (TAD). While sample size calculations based on comparing the rate of change between two groups have been reported by many investigators, the literature has paid relatively little attention to the sample size estimation for time-averaged difference (TAD) in the presence of heterogeneous correlation structure and missing data in repeated measurement studies. In this study, we investigate sample size calculation for the comparison of time-averaged responses between treatment groups in clinical trials with longitudinally observed binary outcomes. The generalized estimating equation (GEE) approach is used to derive a closed-form sample size formula, which is flexible enough to account for arbitrary missing patterns and correlation structures. In particular, we demonstrate that the proposed sample size can accommodate a mixture of missing patterns, which is frequently encountered by practitioners in clinical trials. To our knowledge, this is the first study that considers the mixture of missing patterns in sample size calculation. Our simulation shows that the nominal power and type I error are well preserved over a wide range of design parameters. Sample size calculation is illustrated through an example.  相似文献   

9.
Alternating logistic regressions (ALRs) seem to offer some of the advantages of marginal models estimated via generalized estimating equations (GEE) and generalized linear mixed models (GLMMs). Via simulation study we compared ALRs to marginal models estimated via GEE and subject-specific models estimated via GLMMs, with a focus on estimation of the correlation structure in three-level data sets (e.g. students in classes in schools). Data set size and structure, and amount of correlation in the data sets were varied. For simple correlation structures, ALRs performed well. For three-level correlation structures, all approaches, but especially ALRs, had difficulty assigning the correlation to the correct level, though sample sizes used were small. In addition, ALRs and GEEs had trouble attaching correct inference to the mean effects, though this improved as overall sample size improved. ALRs are a valuable addition to the data analyst's toolkit, though care should be taken when modelling data with three-level structures.  相似文献   

10.
Patient dropout is a common problem in studies that collect repeated binary measurements. Generalized estimating equations (GEE) are often used to analyze such data. The dropout mechanism may be plausibly missing at random (MAR), i.e. unrelated to future measurements given covariates and past measurements. In this case, various authors have recommended weighted GEE with weights based on an assumed dropout model, or an imputation approach, or a doubly robust approach based on weighting and imputation. These approaches provide asymptotically unbiased inference, provided the dropout or imputation model (as appropriate) is correctly specified. Other authors have suggested that, provided the working correlation structure is correctly specified, GEE using an improved estimator of the correlation parameters (‘modified GEE’) show minimal bias. These modified GEE have not been thoroughly examined. In this paper, we study the asymptotic bias under MAR dropout of these modified GEE, the standard GEE, and also GEE using the true correlation. We demonstrate that all three methods are biased in general. The modified GEE may be preferred to the standard GEE and are subject to only minimal bias in many MAR scenarios but in others are substantially biased. Hence, we recommend the modified GEE be used with caution.  相似文献   

11.
Some modem approaches for the analysis of non-normally distributed and correlated data, including Liang and Zeger's ( 1986 ) method of generalized estimating equations (GEE), model the pattern of association among outcomes by assuming a structure for their correlation matrix. A number of relatively simple patterned correlation matrices are available for measurements with one level of correlation. However, modeling the correlation structure of data with multiple levels, or causes, of association is not as straightforward; this note discusses some of the difficulties and discusses a simple class of correlation models that may prove useful in this endeavor.  相似文献   

12.
The shared-parameter model and its so-called hierarchical or random-effects extension are widely used joint modeling approaches for a combination of longitudinal continuous, binary, count, missing, and survival outcomes that naturally occurs in many clinical and other studies. A random effect is introduced and shared or allowed to differ between two or more repeated measures or longitudinal outcomes, thereby acting as a vehicle to capture association between the outcomes in these joint models. It is generally known that parameter estimates in a linear mixed model (LMM) for continuous repeated measures or longitudinal outcomes allow for a marginal interpretation, even though a hierarchical formulation is employed. This is not the case for the generalized linear mixed model (GLMM), that is, for non-Gaussian outcomes. The aforementioned joint models formulated for continuous and binary or two longitudinal binomial outcomes, using the LMM and GLMM, will naturally have marginal interpretation for parameters associated with the continuous outcome but a subject-specific interpretation for the fixed effects parameters relating covariates to binary outcomes. To derive marginally meaningful parameters for the binary models in a joint model, we adopt the marginal multilevel model (MMM) due to Heagerty [13] and Heagerty and Zeger [14] and formulate a joint MMM for two longitudinal responses. This enables to (1) capture association between the two responses and (2) obtain parameter estimates that have a population-averaged interpretation for both outcomes. The model is applied to two sets of data. The results are compared with those obtained from the existing approaches such as generalized estimating equations, GLMM, and the model of Heagerty [13]. Estimates were found to be very close to those from single analysis per outcome but the joint model yields higher precision and allows for quantifying the association between outcomes. Parameters were estimated using maximum likelihood. The model is easy to fit using available tools such as the SAS NLMIXED procedure.  相似文献   

13.
Correlated data are commonly analyzed using models constructed using population-averaged generalized estimating equations (GEEs). The specification of a population-averaged GEE model includes selection of a structure describing the correlation of repeated measures. Accurate specification of this structure can improve efficiency, whereas the finite-sample estimation of nuisance correlation parameters can inflate the variances of regression parameter estimates. Therefore, correlation structure selection criteria should penalize, or account for, correlation parameter estimation. In this article, we compare recently proposed penalties in terms of their impacts on correlation structure selection and regression parameter estimation, and give practical considerations for data analysts. Supplementary materials for this article are available online.  相似文献   

14.
Power analysis for multi-center randomized control trials is quite difficult to perform for non-continuous responses when site differences are modeled by random effects using the generalized linear mixed-effects model (GLMM). First, it is not possible to construct power functions analytically, because of the extreme complexity of the sampling distribution of parameter estimates. Second, Monte Carlo (MC) simulation, a popular option for estimating power for complex models, does not work within the current context because of a lack of methods and software packages that would provide reliable estimates for fitting such GLMMs. For example, even statistical packages from software giants like SAS do not provide reliable estimates at the time of writing. Another major limitation of MC simulation is the lengthy running time, especially for complex models such as GLMM, especially when estimating power for multiple scenarios of interest. We present a new approach to address such limitations. The proposed approach defines a marginal model to approximate the GLMM and estimates power without relying on MC simulation. The approach is illustrated with both real and simulated data, with the simulation study demonstrating good performance of the method.  相似文献   

15.
Longitudinal categorical data are commonly applied in a variety of fields and are frequently analyzed by generalized estimating equation (GEE) method. Prior to making further inference based on the GEE model, the assessment of model fit is crucial. Graphical techniques have long been in widespread use for assessing the model adequacy. We develop alternative graphical approaches utilizing plots of marginal model-checking condition and local mean deviance to assess the GEE model with logit link for longitudinal binary responses. The applications of the proposed procedures are illustrated through two longitudinal binary datasets.  相似文献   

16.
Summary.  Using standard correlation bounds, we show that in generalized estimation equations (GEEs) the so-called 'working correlation matrix' R ( α ) for analysing binary data cannot in general be the true correlation matrix of the data. Methods for estimating the correlation param-eter in current GEE software for binary responses disregard these bounds. To show that the GEE applied on binary data has high efficiency, we use a multivariate binary model so that the covariance matrix from estimating equation theory can be compared with the inverse Fisher information matrix. But R ( α ) should be viewed as the weight matrix, and it should not be confused with the correlation matrix of the binary responses. We also do a comparison with more general weighted estimating equations by using a matrix Cauchy–Schwarz inequality. Our analysis leads to simple rules for the choice of α in an exchangeable or autoregressive AR(1) weight matrix R ( α ), based on the strength of dependence between the binary variables. An example is given to illustrate the assessment of dependence and choice of α .  相似文献   

17.
The 2 × 2 crossover trial uses subjects as their own control to reduce the intersubject variability in the treatment comparison, and typically requires fewer subjects than a parallel design. The generalized estimating equations (GEE) methodology has been commonly used to analyze incomplete discrete outcomes from crossover trials. We propose a unified approach to the power and sample size determination for the Wald Z-test and t-test from GEE analysis of paired binary, ordinal and count outcomes in crossover trials. The proposed method allows misspecification of the variance and correlation of the outcomes, missing outcomes, and adjustment for the period effect. We demonstrate that misspecification of the working variance and correlation functions leads to no or minimal efficiency loss in GEE analysis of paired outcomes. In general, GEE requires the assumption of missing completely at random. For bivariate binary outcomes, we show by simulation that the GEE estimate is asymptotically unbiased or only minimally biased, and the proposed sample size method is suitable under missing at random (MAR) if the working correlation is correctly specified. The performance of the proposed method is illustrated with several numerical examples. Adaption of the method to other paired outcomes is discussed.  相似文献   

18.
Myers & Broyles (2000a, 2000b) illustrate that regression coefficient analysis (RCA) is a viable alternative to a generalized estimating equation (GEE) in the analysis of correlated binomial data. Since the regression coefficients (b i ' s ) may have different precisions, we modify RCA by weighting b i ' s by the inverses of their variances for statistical optimality. We perform the simulation study to evaluate the performance of RCA, modified RCA and GEE in terms of empirical type I errors and empirical powers of the regression coefficients in repeated binary measurement designs with and without dropouts. Two thousand data sets are generated using autoregressive (AR(1)) and compound symmetry (CS) correlation structures. We compare the type I errors and powers of RCA, modified RCA and GEE for the analysis of repeated binary measurement data as affected by different dropout mechanisms such as random dropouts and treatment dependent dropouts.  相似文献   

19.
Generalised estimating equations (GEE) for regression problems with vector‐valued responses are examined. When the response vectors are of mixed type (e.g. continuous–binary response pairs), the GEE approach is a semiparametric alternative to full‐likelihood copula methods, and is closely related to Prentice & Zhao's mean‐covariance estimation equations approach. When the response vectors are of the same type (e.g. measurements on left and right eyes), the GEE approach can be viewed as a ‘plug‐in’ to existing methods, such as the vglm function from the state‐of‐the‐art VGAM package in R. In either scenario, the GEE approach offers asymptotically correct inferences on model parameters regardless of whether the working variance–covariance model is correctly or incorrectly specified. The finite‐sample performance of the method is assessed using simulation studies based on a burn injury dataset and a sorbinil eye trial dataset. The method is applied to data analysis examples using the same two datasets, as well as to a trivariate binary dataset on three plant species in the Hunua ranges of Auckland.  相似文献   

20.
We propose a generalized estimating equations (GEE) approach to the estimation of the mean and covariance structure of bivariate time series processes of panel data. The one-step approach allows for mixed continuous and discrete dependent variables. A Monte Carlo Study is presented to compare our particular GEE estimator with more standard GEE-estimators. In the empirical illustration, we apply our estimator to the analysis of individual wage dynamics and the incidence of profit-sharing in West Germany. Our findings show that time-invariant unobserved individual ability jointly influences individual wages and participation in profit sharing schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号