首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
We consider the scheduling of n family jobs with release dates on m identical parallel batching machines. Each batching machine can process up to b jobs simultaneously as a batch. In the bounded model, b<n, and in the unbounded model, b=∞. Jobs from different families cannot be placed in the same batch. The objective is to minimize the maximum completion time (makespan). When the number of families is a constant, for both bounded model and unbounded model, we present polynomial-time approximation schemes (PTAS).  相似文献   

2.
A batch is a subset of jobs which must be processed jointly in either serial or parallel form. The algorithmic aspects of the batching scheduling problems have been extensively studied in the literature. This paper presents necessary and sufficient conditions of the existence of optimal batch sequences for the single machine, batching, total weighted completion time scheduling problems on two batching ways: (1) all jobs form one batch; (2) each batch contains a single job. This kind of conditions can help us to recognize some special optimal schedules quickly. Research supported by NSFC (10671183).  相似文献   

3.

We consider the problem of scheduling a set of jobs with different processing times and sizes on a single bounded parallel-batch machine with periodic maintenance. Because the machine is in batch-processing model and the capacity is fixed, several jobs can be processed simultaneously in a batch provided that the total size of the jobs in the batch doesn’t exceed the machine capacity. And the processing time of a batch is the largest processing time of the jobs contained in the batch. Meanwhile, the production of each batch is non-resumable, that is, if a batch cannot be completed processing before some maintenance, that batch needs to be processed anew once the machine returns available. Our goal is to minimize the makespan. We first consider two special cases where the jobs have the same sizes or the same processing times, both of which are strongly NP-hard. We present two different approximation algorithms for them and show that these two algorithms have the same tight worst-case ratio of 2. We then consider the general case where the jobs have the arbitrary processing times and arbitrary sizes, for which we propose a 17/5-approximation algorithm.

  相似文献   

4.
Batch-Processing Scheduling with Setup Times   总被引:2,自引:0,他引:2  
The problem is to minimize the total weighted completion time on a single batch-processing machine with setup times. The machine can process a batch of at most B jobs at one time, and the processing time of a batch is given by the longest processing time among the jobs in the batch. The setup time of a batch is given by the largest setup time among the jobs in the batch. This batch-processing problem reduces to the ordinary uni-processor scheduling problem when B = 1. In this paper we focus on the extreme case of B = +, i.e. a batch can contain any number of jobs. We present in this paper a polynomial-time approximation algorithm for the problem with a performance guarantee of 2. We further show that a special case of the problem can be solved in polynomial time.  相似文献   

5.
大规模集成电路预烧作业中分批排序问题的数学模型   总被引:4,自引:2,他引:4  
分批排序(Batch Scheduling)是在半导体生产过程的最后阶段提炼出来的一类重要的排序问题。单机分批排序问题就是n个工件在一台机器上加工,要将工件分批,每批最多可以同时加工B个工件,每批的加工时间等于此批工件中的最大的加工时间。Skutella[8]1998年把平行机排序的P||∑ωjCj和R||∑ωjCj表述成二次的0-1整数规划,得到一些令人满意的结果;国内罗守成等[9]、张倩[10]给出了单机排序问题1||∑ωjCj的数学规划表示,对于用数学规划来研究排序问题是一个很有意义的进展。本文首先介绍总完工时间和最小的带权单机分批排序问题1|B|∑ωjCj,然后将1|B|∑ωjCj表示成数学规划的形式,并且用数学规划中的对偶理论证明了SPT序是其特殊情况1|B=1|∑Cj的最优解。  相似文献   

6.
混合离散差分进化算法在单机批处理调度中的应用   总被引:1,自引:1,他引:0  
本文研究单机批处理调度问题,批处理机有批次容量限制,批处理时间由每个批次所含作业中的最长作业处理时间决定。每个作业具有不同的大小、处理时间、提前拖期惩罚权重,所有作业具有公共交货期,且交货期无限晚。目标函数为最小化所有作业的加权提前拖期惩罚之和。该问题已被证明为NP难题,本研究找到了其最优解具有的一些性质,在此基础上利用它们提出了一种动态规划(DP)与差分进化(DE)算法相结合的混合离散差分进化(HDDE)算法来求解该问题,通过与传统的遗传算法、模拟退火算法和迭代贪婪算法进行对比,HDDE算法显示了更加强大的全局搜索能力。  相似文献   

7.
Scheduling a batch processing system has been extensively studied in the last decade. A batch processing system is modelled as a machine that can process up to b jobs simultaneously as a batch. The scheduling problem involves assigning all n jobs to batches and determining the batch sequence in such a way that certain objective function of job completion times C j is minimized. In this paper, we address the scheduling problem under the on-line setting in the sense that we construct our schedule irrevocably as time proceeds and do not know of the existence of any job that may arrive later. Our objective is to minimize the total weighted completion time w j C j. We provide a linear time on-line algorithm for the unrestrictive model (i.e., b n) and show that the algorithm is 10/3-competitive. For the restrictive model (i.e., b < n), we first consider the (off-line) problem of finding a maximum independent vertex set in an interval graph with cost constraint (MISCP), which is NP-hard. We give a dual fully polynomial time approximation scheme for MISCP, which leads us to a (4 + )-competitive on-line algorithm for any > 0 for the original on-line scheduling problem. These two on-line algorithms are the first deterministic algorithms of constant performance guarantees.  相似文献   

8.
In this paper we consider a semi-online scheduling problem with rejection on two uniform machines with speed 1 and s≥1, respectively. A sequence of independent jobs are given and each job is characterized by its size (processing time) and its penalty, in the sense that, jobs arrive one by one and can be either rejected by paying a certain penalty or assigned to some machine. No preemption is allowed. The objective is to minimize the sum of the makespan of schedule, which is yielded by all accepted jobs and the total penalties of all rejected ones. Further, two rejection strategies are permitted thus an algorithm can propose two different schemes, from which the better solution is chosen. For the above version, we present an optimal semi-online algorithm H that achieves a competitive ratio ρ H (s) as a piecewise function in terms of the speed ratio s.  相似文献   

9.
一种差异工件单机批调度问题的蚁群优化算法   总被引:5,自引:0,他引:5  
由于在利用蚁群算法构建差异工件(即工件有尺寸差异)单机批调度问题的解时,批的加工时间是不确定的.从而不能类似于经典调度问题的蚁群算法把批加工时间的倒数作为蚁群算法中的启发式信息,引入批的利用率和批的负载均衡率作为蚁群算法中的启发式信息,提出了JACO(ant colony optimization based a job sequence)和BACO(ant colony optimization based a batch sequence)两种蚁群优化算法.在算法JACO中,解的编码为工件序列,它对应着用BF(best fit)分批规则生成的调度方案,信息素代表工件间的排列顺序;在算法BACO中,解的编码为批序列,信息素代表工件间的批相关性,由此信息素通过中间信息素量来构造相应的解,并引入特定的局部优化策略,提高了算法的搜索效率.实验表明,与以往文献中的SA(simula-ted annealing)、GA(genetic algorithm)算法以及FFLPT(first-fit longest processing time)、BFLPT (best-fit longest processing time)启发式规则相比,算法JACO和BACO明显优于它们,且BACO算法比JACO算法效果更好.  相似文献   

10.
《Omega》2007,35(5):623-626
In this paper we study the scheduling problem in which each customer order consists of several jobs of different types, which are to be processed on m facilities. Each facility is dedicated to the processing of only one type of jobs. All jobs of an order have to be delivered to the customer at the same time. The objective is to schedule all the orders to minimize the total weighted order completion time. While the problem has been shown to be unary NP-hard, we develop a heuristics to tackle the problem and analyze its worst-case performance.  相似文献   

11.
In this paper we consider the scheduling problem with parallel-batching machines from a game theoretic perspective. There are m parallel-batching machines each of which can handle up to b jobs simultaneously as a batch. The processing time of a batch is the time required for processing the longest job in the batch, and all the jobs in a batch start and complete at the same time. There are n jobs. Each job is owned by a rational and selfish agent and its individual cost is the completion time of its job. The social cost is the largest completion time over all jobs, the makespan. We design a coordination mechanism for the scheduling game problem. We discuss the existence of pure Nash Equilibria and offer upper and lower bounds on the price of anarchy of the coordination mechanism. We show that the mechanism has a price of anarchy no more than \(2-\frac{2}{3b}-\frac{1}{3\max \{m,b\}}\).  相似文献   

12.
This is a study of single and parallel machine scheduling problems with controllable processing time for each job. The processing time for job j depends on the position of the job in the schedule and is a function of the number of resource units allocated to its processing. Processing time functions and processing cost functions are allowed to be nonlinear. The scheduling problems considered here have important applications in industry and include many of the existing scheduling models as special cases. For the single machine problem, the objective is minimization of total compression costs plus a scheduling measure. The scheduling measures include makespan, total flow time, total differences in completion times, total differences in waiting times, and total earliness and tardiness with a common due date for all jobs. Except when the total earliness and tardiness measure is involved, each case the problem is solved efficiently. Under an assumption typically satisfied in just-in-time systems, the problem with total earliness and tardiness measure is also solved efficiently. Finally, for a large class of processing time functions; parallel machine problems with total flow time and total earliness and tardiness measures are solved efficiently. In each case we reduce the problem to a transportation problem.  相似文献   

13.
对同时优化电力成本和制造跨度的多目标批处理机调度问题进行了研究,设计了两种多目标蚁群算法,基于工件序的多目标蚁群算法(J-PACO,Job-based Pareto Ant Colony Optimization)和基于成批的多目标蚁群算法(B-PACO,Batch-based Pareto Ant Colony Optimization)对问题进行求解分析。由于分时电价中电价是时间的函数,因而在传统批调度进行批排序的基础上,需要进一步确定批加工时间点以测定电力成本。提出的两种蚁群算法分别将工件和批与时间线相结合进行调度对此类问题进行求解。通过仿真实验将两种算法对问题的求解进行了比较,仿真实验表明B-PACO算法通过结合FFLPT(First Fit Longest Processing Time)启发式算法先将工件成批再生成最终方案,提高了算法搜索效率,并且在衡量算法搜索非支配解数量的Q指标和衡量非支配集与Pareto边界接近程度的HV指标上,均优于J-PACO算法。  相似文献   

14.
In this paper, we study on-line scheduling problems on a batch machine with the assumption that all jobs have their processing times in [p, (1+φ)p], where p>0 and \(\phi=(\sqrt{5}-1)/2\). Jobs arrive over time. First, we deal with the on-line problem on a bounded batch machine with the objective to minimize makespan. A class of algorithms with competitive ratio \((\sqrt{5}+1)/2\) are given. Then we consider the scheduling on an unbounded batch machine to minimize the time by which all jobs have been delivered, and provide a class of on-line algorithms with competitive ratio \((\sqrt{5}+1)/2\). The two class of algorithms are optimal for the problems studied here.  相似文献   

15.
A PTAS for Semiconductor Burn-in Scheduling   总被引:2,自引:0,他引:2  
In this paper a polynomial time approximation scheme, PTAS for short, is presented for the problem of scheduling jobs in a batch processing system. Each job has a pre-defined release date, which indicates when the job is available, and a pre-defined burn-in time, which is the least time needed for processing the job. At one time, at most B jobs can be processed together, where B is a pre-given number. No preemption is permitted.Research supported in part by an RGC CERG grant [CityU 1081/02E] and a grant from CityU [7001347].Supported by the fund from NSFC under grant numbers 10271065 and 60373025.  相似文献   

16.
We consider the scheduling problems arising when two agents, each with a family of jobs, compete to perform their respective jobs on a single machine. A setup time is needed for a job if it is the first job to be processed on the machine or its processing on the machine follows a job that belongs to another family. Each agent wants to minimize a certain cost function, which depends on the completion times of its jobs only. The aim is to find a schedule for all the jobs of the two agents that minimizes the objective of one agent while keeping the objective of the other agent being bounded by a fixed value \(Q\). Polynomial-time and pseudo-polynomial-time algorithms are designed to solve the problem involving various combinations of regular scheduling objective functions.  相似文献   

17.
Single machine scheduling problems have been extensively studied in the literature under the assumption that all jobs have to be processed. However, in many practical cases, one may wish to reject the processing of some jobs in the shop, which results in a rejection cost. A solution for a scheduling problem with rejection is given by partitioning the jobs into a set of accepted and a set of rejected jobs, and by scheduling the set of accepted jobs among the machines. The quality of a solution is measured by two criteria: a scheduling criterion, F1, which is dependent on the completion times of the accepted jobs, and the total rejection cost, F2. Problems of scheduling with rejection have been previously studied, but usually within a narrow framework—focusing on one scheduling criterion at a time. This paper provides a robust unified bicriteria analysis of a large set of single machine problems sharing a common property, namely, all problems can be represented by or reduced to a scheduling problem with a scheduling criterion which includes positional penalties. Among these problems are the minimization of the makespan, the sum of completion times, the sum and variation of completion times, and the total earliness plus tardiness costs where the due dates are assignable. Four different problem variations for dealing with the two criteria are studied. The variation of minimizing F1+F2 is shown to be solvable in polynomial time, while all other three variations are shown to be $\mathcal{NP}$ -hard. For those hard problems we provide a pseudo polynomial time algorithm. An FPTAS for obtaining an approximate efficient schedule is provided as well. In addition, we present some interesting special cases which are solvable in polynomial time.  相似文献   

18.
一类新型批处理机调度问题的理论分析   总被引:1,自引:0,他引:1  
钢卷在冷轧生产中,为了改进其性能,需要在罩式炉进行退火,退火过程由加热、保温和降温三段组成,而这三段处理时间由于工艺上的要求不能归结为一个时间,这与传统批处理机调度有明显的差别.对新型批处理机的总加权完成时间最小化问题建立了非线性整数规划模型,开发了基于动态规划的启发式算法.通过理论分析,获得该算法的误差性能比为3.对于三段中的某一段板卷的处理时间相同的情况,证明了启发式算法的误差性能比是2,而且证明是紧界.对于三段中的某二段板卷的处理时间相同的情况,证明了启发式算法是最优算法.对启发式算法扩展到带有任意段的加工时间的一般情况进行了性能分析.  相似文献   

19.
We study the problem of scheduling jobs on a single batch processing machine to minimize the total weighted completion time. A batch processing machine is one that can process a number of jobs simultaneously as a batch. The processing time of a batch is given by the processing time of the longest job in the batch. We present a branch and bound algorithm to obtain optimal solutions and develop lower bounds and dominance conditions. We also develop a number of heuristics and evaluate their performance through extensive computational experiments. Results show that two of the heuristics consistently generate high-quality solutions in modest CPU times.  相似文献   

20.
具有优先约束和加工时间依赖开工时间的单机排序问题   总被引:3,自引:1,他引:3  
研究工件间的优先约束为串并有向图的单机加权总完工时间问题,通过证明在工件加工时间是开工时间的线性函数的情况下,模块M的ρ因子最大初始集合I中的工件优先于模块M中的其它工件加工,并且被连续加工所得的排序为最优排序,从而将Lawler用来求解约束为串并有向图的单机加权总完工时间问题的方法推广到这个问题上来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号