首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, a technique based on pseudo‐observations has been proposed to tackle the so‐called convex hull problem for the empirical likelihood statistic. The resulting adjusted empirical likelihood also achieves the high‐order precision of the Bartlett correction. Nevertheless, the technique induces an upper bound on the resulting statistic that may lead, in certain circumstances, to worthless confidence regions equal to the whole parameter space. In this paper, we show that suitable pseudo‐observations can be deployed to make each element of the generalized power divergence family Bartlett‐correctable and released from the convex hull problem. Our approach is conceived to achieve this goal by means of two distinct sets of pseudo‐observations with different tasks. An important effect of our formulation is to provide a solution that permits to overcome the problem of the upper bound. The proposal, which effectiveness is confirmed by simulation results, gives back attractiveness to a broad class of statistics that potentially contains good alternatives to the empirical likelihood.  相似文献   

2.
We propose the penalized empirical likelihood method via bridge estimator in Cox's proportional hazard model for parameter estimation and variable selection. Under reasonable conditions, we show that penalized empirical likelihood in Cox's proportional hazard model has oracle property. A penalized empirical likelihood ratio for the vector of regression coefficients is defined and its limiting distribution is a chi-square distributions. The advantage of penalized empirical likelihood as a nonparametric likelihood approach is illustrated in testing hypothesis and constructing confidence sets. The method is illustrated by extensive simulation studies and a real example.  相似文献   

3.
This paper investigates the properties of bootstrap and related methods assuming that the underlying distribution is symmetric but otherwise unknown. In particular it studies the percentile-t, nonparametric tilting and empirical likelihood and finds that the performance of percentile-t and non-parametric tilting methods can be improved by incorporating the symmetry into the resampling procedure. However, for symmetric empirical likelihood, the Bartlett correctability no longer holds, although use of bootstrap calibration restores the good coverage properties typically associated with Bartlett correction. This surprising result shows that Bartlett correctability is a very delicate property.  相似文献   

4.
Pairwise likelihood functions are convenient surrogates for the ordinary likelihood, useful when the latter is too difficult or even impractical to compute. One drawback of pairwise likelihood inference is that, for a multidimensional parameter of interest, the pairwise likelihood analogue of the likelihood ratio statistic does not have the standard chi-square asymptotic distribution. Invoking the theory of unbiased estimating functions, this paper proposes and discusses a computationally and theoretically attractive approach based on the derivation of empirical likelihood functions from the pairwise scores. This approach produces alternatives to the pairwise likelihood ratio statistic, which allow reference to the usual asymptotic chi-square distribution and which are useful when the elements of the Godambe information are troublesome to evaluate or in the presence of large data sets with relative small sample sizes. Two Monte Carlo studies are performed in order to assess the finite-sample performance of the proposed empirical pairwise likelihoods.  相似文献   

5.
To construct confidence regions for the difference of two population means, Liu and Yu (2010 Liu, Y., Yu, C.W. (2010). Bartlett correctable two-sample adjusted empirical likelihood. J. Multivariate Anal. 101(7):17011711.[Crossref], [Web of Science ®] [Google Scholar]) proposed a two-sample adjusted empirical likelihood (AEL) with high-order precision. However, two issues have not been well addressed. The first one is that the AEL ratio function is bounded such that the size of the confidence regions may overly expand when the sample sizes are small and/or the dimension of data is large. The second issue is that its high-order precision relies on accurate estimation of the Bartlett factor, while accurately estimating the Bartlett factor is a serious challenge. In order to address these two problems simultaneously, we propose a two-sample modified AEL to ensure the boundedness of confidence regions and preserve the Bartlett correctability. A two-stage procedure is proposed for constructing accurate confidence regions via resampling. The finite-sample performance of the proposed method is illustrated by simulations and a real-data example.  相似文献   

6.
Bayes methodology provides posterior distribution functions based on parametric likelihoods adjusted for prior distributions. A distribution-free alternative to the parametric likelihood is use of empirical likelihood (EL) techniques, well known in the context of nonparametric testing of statistical hypotheses. Empirical likelihoods have been shown to exhibit many of the properties of conventional parametric likelihoods. In this paper, we propose and examine Bayes factors (BF) methods that are derived via the EL ratio approach. Following Kass and Wasserman (1995), we consider Bayes factors type decision rules in the context of standard statistical testing techniques. We show that the asymptotic properties of the proposed procedure are similar to the classical BF's asymptotic operating characteristics. Although we focus on hypothesis testing, the proposed approach also yields confidence interval estimators of unknown parameters. Monte Carlo simulations were conducted to evaluate the theoretical results as well as to demonstrate the power of the proposed test.  相似文献   

7.
Tianqing Liu 《Statistics》2016,50(1):89-113
This paper proposes an empirical likelihood-based weighted (ELW) quantile regression approach for estimating the conditional quantiles when some covariates are missing at random. The proposed ELW estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness is correctly specified. The limiting covariance matrix of the ELW estimator can be estimated by a resampling technique, which does not involve nonparametric density estimation or numerical derivatives. Simulation results show that the ELW method works remarkably well in finite samples. A real data example is used to illustrate the proposed ELW method.  相似文献   

8.
A functional-form empirical likelihood method is proposed as an alternative method to the empirical likelihood method. The proposed method has the same asymptotic properties as the empirical likelihood method but has more flexibility in choosing the weight construction. Because it enjoys the likelihood-based interpretation, the profile likelihood ratio test can easily be constructed with a chi-square limiting distribution. Some computational details are also discussed, and results from finite-sample simulation studies are presented.  相似文献   

9.
This paper is concerned with statistical inference for partially nonlinear models. Empirical likelihood method for parameter in nonlinear function and nonparametric function is investigated. The empirical log-likelihood ratios are shown to be asymptotically chi-square and then the corresponding confidence intervals are constructed. By the empirical likelihood ratio functions, we also obtain the maximum empirical likelihood estimators of the parameter in nonlinear function and nonparametric function, and prove the asymptotic normality. A simulation study indicates that, compared with normal approximation-based method and the bootstrap method, the empirical likelihood method performs better in terms of coverage probabilities and average length/widths of confidence intervals/bands. An application to a real dataset is illustrated.  相似文献   

10.
The asymptotically distribution-free (ADF) test statistic was proposed by Browne (1984). It is known that the null distribution of the ADF test statistic is asymptotically distributed according to the chi-square distribution. This asymptotic property is always satisfied, even under nonnormality, although the null distributions of other famous test statistics, e.g., the maximum likelihood test statistic and the generalized least square test statistic, do not converge to the chi-square distribution under nonnormality. However, many authors have reported numerical results which indicate that the quality of the chi-square approximation for the ADF test is very poor, even when the sample size is large and the population distribution is normal. In this paper, we try to improve the quality of the chi-square approximation to the ADF test for a covariance matrix with a linear structure by using the Bartlett correction applicable under the assumption of normality. By conducting numerical studies, we verify that the obtained Bartlett correction can perform well even when the assumption of normality is violated.  相似文献   

11.
An empirical likelihood method was proposed by Owen and has been extended to many semiparametric and nonparametric models with a continuous response variable. However, there has been less attention focused on the generalized regression model. This article systematically studies two adjusted empirical-likelihood-based methods in the generalized varying-coefficient partially linear models. Based on the popular profile likelihood estimation procedure, the new adjusted empirical likelihood technology for the parameter is established and the resulting statistics are shown to be asymptotically standard chi-square distributed. Further, the adjusted empirical-likelihood-based confidence regions are established, and an efficient adjusted profile empirical-likelihood-based confidence intervals/regions for any components of the parameter, which are of primary interest, is also constructed. Their asymptotic properties are also derived. Some numerical studies are carried out to illustrate the performance of the proposed inference procedures.  相似文献   

12.
In this paper, we consider the statistical inference for the varying-coefficient partially nonlinear model with additive measurement errors in the nonparametric part. The local bias-corrected profile nonlinear least-squares estimation procedure for parameter in nonlinear function and nonparametric function is proposed. Then, the asymptotic normality properties of the resulting estimators are established. With the empirical likelihood method, a local bias-corrected empirical log-likelihood ratio statistic for the unknown parameter, and a corrected and residual adjusted empirical log-likelihood ratio for the nonparametric component are constructed. It is shown that the resulting statistics are asymptotically chi-square distribution under some suitable conditions. Some simulations are conducted to evaluate the performance of the proposed methods. The results indicate that the empirical likelihood method is superior to the profile nonlinear least-squares method in terms of the confidence regions of parameter and point-wise confidence intervals of nonparametric function.  相似文献   

13.
Abstract

This article investigates the asymptotic properties of a simple empirical-likelihood-based inference method for discontinuity in density. The parameter of interest is a function of two one-sided limits of the probability density function at (possibly) two cut-off points. Our approach is based on the first-order conditions from a minimum contrast problem. We investigate both first-order and second-order properties of the proposed method. We characterize the leading coverage error of our inference method and propose a coverage-error-optimal (CE-optimal, hereafter) bandwidth selector. We show that the empirical likelihood ratio statistic is Bartlett correctable. An important special case is the manipulation testing problem in a regression discontinuity design (RDD), where the parameter of interest is the density difference at a known threshold. In RDD, the continuity of the density of the assignment variable at the threshold is considered as a “no-manipulation” behavioral assumption, which is a testable implication of an identifying condition for the local average treatment effect. When specialized to the manipulation testing problem, the CE-optimal bandwidth selector has an explicit form. We propose a data-driven CE-optimal bandwidth selector for use in practice. Results from Monte Carlo simulations are presented. Usefulness of our method is illustrated by an empirical example.  相似文献   

14.
Zhouping Li  Yang Wei 《Statistics》2018,52(5):1128-1155
Testing the Lorenz dominance is of importance in economic and social sciences. In this article, we propose new tools to do inferences for the difference of two Lorenz curves. The asymptotic normality of the proposed smoothed nonparametric estimator is proved. We also propose a smoothed jackknife empirical likelihood (JEL) method which avoids to estimate the complicate asymptotic variance. It is proved that the proposed JEL ratio statistics converge to the standard chi-square distribution. Simulation studies and real data analysis are also conducted, and show encouraging finite-sample performance.  相似文献   

15.
In this study, we develop nonparametric analysis of deviance tools for generalized partially linear models based on local polynomial fitting. Assuming a canonical link, we propose expressions for both local and global analysis of deviance, which admit an additivity property that reduces to analysis of variance decompositions in the Gaussian case. Chi-square tests based on integrated likelihood functions are proposed to formally test whether the nonparametric term is significant. Simulation results are shown to illustrate the proposed chi-square tests and to compare them with an existing procedure based on penalized splines. The methodology is applied to German Bundesbank Federal Reserve data.  相似文献   

16.
Ruiqin Tian 《Statistics》2017,51(5):988-1005
In this paper, empirical likelihood inference for longitudinal data within the framework of partial linear regression models are investigated. The proposed procedures take into consideration the correlation within groups without involving direct estimation of nuisance parameters in the correlation matrix. The empirical likelihood method is used to estimate the regression coefficients and the baseline function, and to construct confidence intervals. A nonparametric version of Wilk's theorem for the limiting distribution of the empirical likelihood ratio is derived. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. The finite sample behaviour of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial data set.  相似文献   

17.
We propose a class of general partially linear additive transformation models (GPLATM) with right-censored survival data in this work. The class of models are flexible enough to cover many commonly used parametric and nonparametric survival analysis models as its special cases. Based on the B spline interpolation technique, we estimate the unknown regression parameters and functions by the maximum marginal likelihood estimation method. One important feature of the estimation procedure is that it does not need the baseline and censoring cumulative density distributions. Some numerical studies illustrate that this procedure can work very well for the moderate sample size.  相似文献   

18.
Bartlett correction constitutes one of the attractive features of empirical likelihood because it enables the construction of confidence regions for parameters with improved coverage probabilities. We study the Bartlett correction of spatial frequency domain empirical likelihood (SFDEL) based on general spectral estimating functions for regularly spaced spatial data. This general formulation can be applied to testing and estimation problems in spatial analysis, for example testing covariance isotropy, testing covariance separability as well as estimating the parameters of spatial covariance models. We show that the SFDEL is Bartlett correctable. In particular, the improvement in coverage accuracies of the Bartlett‐corrected confidence regions depends on the underlying spatial structures. The Canadian Journal of Statistics 47: 455–472; 2019 © 2019 Statistical Society of Canada  相似文献   

19.
In the presence of univariate censoring, a class of nonparametric estimators is proposed for linear functionals of a bivariate distribution of paired failure times. The estimators are shown to be root-n consistent and asymptotically normal. An adjusted empirical log-likelihood ratio statistic is developed and proved to follow a chi-square distribution asymptotically. Two types of confidence intervals, based on the normal approximation method and the empirical likelihood method, respectively, are constructed to make inference about the linear functionals. Their performance is evaluated in several simulation studies and a real example.  相似文献   

20.
This article is concerned with statistical inference of the partial linear isotonic regression model missing response and measurement errors in covariates. We proposed an empirical likelihood ratio test statistics and show that it has a limiting weighted chi-square distribution. An adjusted empirical likelihood ratio statistic, which is shown to have a limiting standard central chi-square distribution, is then proposed further. A maximum empirical likelihood estimator is also developed. A simulation study is conducted to examine the finite-sample property of proposed procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号