首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
The so-called “fixed effects” approach to the estimation of panel data models suffers from the limitation that it is not possible to estimate the coefficients on explanatory variables that are time-invariant. This is in contrast to a “random effects” approach, which achieves this by making much stronger assumptions on the relationship between the explanatory variables and the individual-specific effect. In a linear model, it is possible to obtain the best of both worlds by making random effects-type assumptions on the time-invariant explanatory variables while maintaining the flexibility of a fixed effects approach when it comes to the time-varying covariates. This article attempts to do the same for some popular nonlinear models.  相似文献   

2.
A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed using conditional-sum-of-squares criteria based on projected series by which latent characteristics are proxied. Resulting estimates are consistent and asymptotically normal at standard parametric rates. A simulation study provides reliability on the estimation method. The method is then applied to the long-run relationship between debt and GDP. Supplementary materials for this article are available online.  相似文献   

3.
We study estimation and hypothesis testing in single‐index panel data models with individual effects. Through regressing the individual effects on the covariates linearly, we convert the estimation problem in single‐index panel data models to that in partially linear single‐index models. The conversion is valid regardless of the individual effects being random or fixed. We propose an estimating equation approach, which has a desirable double robustness property. We show that our method is applicable in single‐index panel data models with heterogeneous link functions. We further design a chi‐squared test to evaluate whether the individual effects are random or fixed. We conduct simulations to demonstrate the finite sample performance of the method and conduct a data analysis to illustrate its usefulness.  相似文献   

4.
部分线性模型是一类非常重要的半参数回归模型,由于它既含有参数部分又含有非参数部分,与常规的线性模型相比具有更强的适应性和解释能力。文章研究带有局部平稳协变量的固定效应部分线性面板数据模型的统计推断。首先提出一个两阶段估计方法得到模型中未知参数和非参数函数的估计,并证明估计量的渐近性质,然后运用不变原理构造出非参数函数的一致置信带,最后通过数值模拟研究和实例分析验证了该方法的有效性。  相似文献   

5.
This article provides the large sample distribution of the iterated feasible generalized least-squares (IFGLS) estimator of an augmented dynamic panel data model. The regressors in the model include lagged values of the dependent variable and may include other explanatory variables that, while exogenous with respect to the time-varying error component, may be correlated with an unobserved time-invariant component. The article compares the finite sample properties of the IFGLS estimator to that of GMM estimators using both simulated and real data and finds that the IFGLS estimator compares favorably.  相似文献   

6.
Modified Profile Likelihood for Fixed-Effects Panel Data Models   总被引:1,自引:0,他引:1  
We show how modified profile likelihood methods, developed in the statistical literature, may be effectively applied to estimate the structural parameters of econometric models for panel data, with a remarkable reduction of bias with respect to ordinary likelihood methods. Initially, the implementation of these methods is illustrated for general models for panel data including individual-specific fixed effects and then, in more detail, for the truncated linear regression model and dynamic regression models for binary data formulated along with different specifications. Simulation studies show the good behavior of the inference based on the modified profile likelihood, even when compared to an ideal, although infeasible, procedure (in which the fixed effects are known) and also to alternative estimators existing in the econometric literature. The proposed estimation methods are implemented in an R package that we make available to the reader.  相似文献   

7.
ABSTRACT

Standard econometric methods can overlook individual heterogeneity in empirical work, generating inconsistent parameter estimates in panel data models. We propose the use of methods that allow researchers to easily identify, quantify, and address estimation issues arising from individual slope heterogeneity. We first characterize the bias in the standard fixed effects estimator when the true econometric model allows for heterogeneous slope coefficients. We then introduce a new test to check whether the fixed effects estimation is subject to heterogeneity bias. The procedure tests the population moment conditions required for fixed effects to consistently estimate the relevant parameters in the model. We establish the limiting distribution of the test and show that it is very simple to implement in practice. Examining firm investment models to showcase our approach, we show that heterogeneity bias-robust methods identify cash flow as a more important driver of investment than previously reported. Our study demonstrates analytically, via simulations, and empirically the importance of carefully accounting for individual specific slope heterogeneity in drawing conclusions about economic behavior.  相似文献   

8.
In linear and nonparametric regression models, the problem of testing for symmetry of the distribution of errors is considered. We propose a test statistic which utilizes the empirical characteristic function of the corresponding residuals. The asymptotic null distribution of the test statistic as well as its behavior under alternatives is investigated. A simulation study compares bootstrap versions of the proposed test to other more standard procedures.  相似文献   

9.
The maximum likelihood estimator (MLE) in nonlinear panel data models with fixed effects is widely understood (with a few exceptions) to be biased and inconsistent when T, the length of the panel, is small and fixed. However, there is surprisingly little theoretical or empirical evidence on the behavior of the estimator on which to base this conclusion. The received studies have focused almost exclusively on coefficient estimation in two binary choice models, the probit and logit models. In this note, we use Monte Carlo methods to examine the behavior of the MLE of the fixed effects tobit model. We find that the estimator's behavior is quite unlike that of the estimators of the binary choice models. Among our findings are that the location coefficients in the tobit model, unlike those in the probit and logit models, are unaffected by the “incidental parameters problem.” But, a surprising result related to the disturbance variance emerges instead - the finite sample bias appears here rather than in the slopes. This has implications for estimation of marginal effects and asymptotic standard errors, which are also examined in this paper. The effects are also examined for the probit and truncated regression models, extending the range of received results in the first of these beyond the widely cited biases in the coefficient estimators.  相似文献   

10.
In studies that produce data with spatial structure, it is common that covariates of interest vary spatially in addition to the error. Because of this, the error and covariate are often correlated. When this occurs, it is difficult to distinguish the covariate effect from residual spatial variation. In an i.i.d. normal error setting, it is well known that this type of correlation produces biased coefficient estimates, but predictions remain unbiased. In a spatial setting, recent studies have shown that coefficient estimates remain biased, but spatial prediction has not been addressed. The purpose of this paper is to provide a more detailed study of coefficient estimation from spatial models when covariate and error are correlated and then begin a formal study regarding spatial prediction. This is carried out by investigating properties of the generalized least squares estimator and the best linear unbiased predictor when a spatial random effect and a covariate are jointly modelled. Under this setup, we demonstrate that the mean squared prediction error is possibly reduced when covariate and error are correlated.  相似文献   

11.
ABSTRACT

In panel data models and other regressions with unobserved effects, fixed effects estimation is often paired with cluster-robust variance estimation (CRVE) to account for heteroscedasticity and un-modeled dependence among the errors. Although asymptotically consistent, CRVE can be biased downward when the number of clusters is small, leading to hypothesis tests with rejection rates that are too high. More accurate tests can be constructed using bias-reduced linearization (BRL), which corrects the CRVE based on a working model, in conjunction with a Satterthwaite approximation for t-tests. We propose a generalization of BRL that can be applied in models with arbitrary sets of fixed effects, where the original BRL method is undefined, and describe how to apply the method when the regression is estimated after absorbing the fixed effects. We also propose a small-sample test for multiple-parameter hypotheses, which generalizes the Satterthwaite approximation for t-tests. In simulations covering a wide range of scenarios, we find that the conventional cluster-robust Wald test can severely over-reject while the proposed small-sample test maintains Type I error close to nominal levels. The proposed methods are implemented in an R package called clubSandwich. This article has online supplementary materials.  相似文献   

12.
This article suggests random and fixed effects spatial two-stage least squares estimators for the generalized mixed regressive spatial autoregressive panel data model. This extends the generalized spatial panel model of Baltagi et al. (2013 Baltagi, B. H., Egger, P., Pfaffermayr, M. (2013). A generalized spatial panel data model with random effects. Econometric Reviews 32:650685.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]) by the inclusion of a spatial lag term. The estimation method utilizes the Generalized Moments method suggested by Kapoor et al. (2007 Kapoor, M., Kelejian, H. H., Prucha, I. R. (2007). Panel data models with spatially correlated error components. Journal of Econometrics 127(1):97130.[Crossref], [Web of Science ®] [Google Scholar]) for a spatial autoregressive panel data model. We derive the asymptotic distributions of these estimators and suggest a Hausman test a la Mutl and Pfaffermayr (2011 Mutl, J., Pfaffermayr, M. (2011). The Hausman test in a Cliff and Ord panel model. Econometrics Journal 14:4876.[Crossref], [Web of Science ®] [Google Scholar]) based on the difference between these estimators. Monte Carlo experiments are performed to investigate the performance of these estimators as well as the corresponding Hausman test.  相似文献   

13.
Censored data arise naturally in a number of fields, particularly in problems of reliability and survival analysis. There are several types of censoring; in this article, we shall confine ourselves to the right randomly censoring type. Under the Bayesian framework, we study the estimation of parameters in a general framework based on the random censored observations under Linear-Exponential (LINEX) and squared error loss (SEL) functions. As a special case, Weibull model is discussed and the admissibility of estimators of parameters verified. Finally, a simulation study is conducted based on Monte Carlo (MC) method for comparing estimated risks of the estimators obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号