共查询到20条相似文献,搜索用时 10 毫秒
1.
Luo Xiao 《Journal of nonparametric statistics》2019,31(2):289-314
We study the class of bivariate penalised splines that use tensor product splines and a smoothness penalty. Similar to Claeskens, G., Krivobokova, T., and Opsomer, J.D. [(2009), ‘Asymptotic Properties of Penalised Spline Estimators’, Biometrika, 96(3), 529–544] for the univariate penalised splines, we show that, depending on the number of knots and penalty, the global asymptotic convergence rate of bivariate penalised splines is either similar to that of tensor product regression splines or to that of thin plate splines. In each scenario, the bivariate penalised splines are found rate optimal in the sense of Stone, C.J. [(12, 1982), ‘Optimal Global Rates of Convergence for Nonparametric Regression’, The Annals of Statistics, 10(4), 1040–1053] for a corresponding class of functions with appropriate smoothness. For the scenario where a small number of knots is used, we obtain expressions for the local asymptotic bias and variance and derive the point-wise and uniform asymptotic normality. The theoretical results are applicable to tensor product regression splines. 相似文献
2.
We demonstrate the use of our R package, gammSlice, for Bayesian fitting and inference in generalised additive mixed model analysis. This class of models includes generalised linear mixed models and generalised additive models as special cases. Accurate Bayesian inference is achievable via sufficiently large Markov chain Monte Carlo (MCMC) samples. Slice sampling is a key component of the MCMC scheme. Comparisons with existing generalised additive mixed model software shows that gammSlice offers improved inferential accuracy, albeit at the cost of longer computational time. 相似文献
3.
4.
Colin Chen 《统计学通讯:理论与方法》2013,42(5-6):1257-1271
Following the extension from linear mixed models to additive mixed models, extension from generalized linear mixed models to generalized additive mixed models is made, Algorithms are developed to compute the MLE's of the nonlinear effects and the covariance structures based on the penalized marginal likelihood. Convergence of the algorithms and selection of the smooth param¬eters are discussed. 相似文献
5.
Thin plate regression splines 总被引:2,自引:0,他引:2
Simon N. Wood 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2003,65(1):95-114
Summary. I discuss the production of low rank smoothers for d ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thin plate spline smoothing problem and are optimal in the sense that the truncation is designed to result in the minimum possible perturbation of the thin plate spline smoothing problem given the dimension of the basis used to construct the smoother. By making use of Lanczos iteration the basis change and truncation are computationally efficient. The smoothers allow the use of approximate thin plate spline models with large data sets, avoid the problems that are associated with 'knot placement' that usually complicate modelling with regression splines or penalized regression splines, provide a sensible way of modelling interaction terms in generalized additive models, provide low rank approximations to generalized smoothing spline models, appropriate for use with large data sets, provide a means for incorporating smooth functions of more than one variable into non-linear models and improve the computational efficiency of penalized likelihood models incorporating thin plate splines. Given that the approach produces spline-like models with a sparse basis, it also provides a natural way of incorporating unpenalized spline-like terms in linear and generalized linear models, and these can be treated just like any other model terms from the point of view of model selection, inference and diagnostics. 相似文献
6.
Based on B-spline basis functions and smoothly clipped absolute deviation (SCAD) penalty, we present a new estimation and variable selection procedure based on modal regression for partially linear additive models. The outstanding merit of the new method is that it is robust against outliers or heavy-tail error distributions and performs no worse than the least-square-based estimation for normal error case. The main difference is that the standard quadratic loss is replaced by a kernel function depending on a bandwidth that can be automatically selected based on the observed data. With appropriate selection of the regularization parameters, the new method possesses the consistency in variable selection and oracle property in estimation. Finally, both simulation study and real data analysis are performed to examine the performance of our approach. 相似文献
7.
In practice, it is not uncommon to encounter the situation that a discrete response is related to both a functional random variable and multiple real-value random variables whose impact on the response is nonlinear. In this paper, we consider the generalized partial functional linear additive models (GPFLAM) and present the estimation procedure. In GPFLAM, the nonparametric functions are approximated by polynomial splines and the infinite slope function is estimated based on the principal component basis function approximations. We obtain the estimator by maximizing the quasi-likelihood function. We investigate the finite sample properties of the estimation procedure via Monte Carlo simulation studies and illustrate our proposed model by a real data analysis. 相似文献
8.
9.
Kevin YX Wang Garth Tarr Jean YH Yang Samuel Mueller 《Australian & New Zealand Journal of Statistics》2019,61(4):445-465
We present APproximated Exhaustive Search (APES), which enables fast and approximated exhaustive variable selection in Generalised Linear Models (GLMs). While exhaustive variable selection remains as the gold standard in many model selection contexts, traditional exhaustive variable selection suffers from computational feasibility issues. More precisely, there is often a high cost associated with computing maximum likelihood estimates (MLE) for all subsets of GLMs. Efficient algorithms for exhaustive searches exist for linear models, most notably the leaps‐and‐bound algorithm and, more recently, the mixed integer optimisation (MIO) algorithm. The APES method learns from observational weights in a generalised linear regression super‐model and reformulates the GLM problem as a linear regression problem. In this way, APES can approximate a true exhaustive search in the original GLM space. Where exhaustive variable selection is not computationally feasible, we propose a best‐subset search, which also closely approximates a true exhaustive search. APES is made available in both as a standalone R package as well as part of the already existing mplot package. 相似文献
10.
Ken J. Beath 《Journal of applied statistics》2018,45(12):2256-2268
A method for robustness in linear models is to assume that there is a mixture of standard and outlier observations with a different error variance for each class. For generalised linear models (GLMs) the mixture model approach is more difficult as the error variance for many distributions has a fixed relationship to the mean. This model is extended to GLMs by changing the classes to one where the standard class is a standard GLM and the outlier class which is an overdispersed GLM achieved by including a random effect term in the linear predictor. The advantages of this method are it can be extended to any model with a linear predictor, and outlier observations can be easily identified. Using simulation the model is compared to an M-estimator, and found to have improved bias and coverage. The method is demonstrated on three examples. 相似文献
11.
Martin Bilodeau 《Revue canadienne de statistique》1992,20(3):257-269
Suppose the observations (ti,yi), i = 1,… n, follow the model where gj are unknown functions. The estimation of the additive components can be done by approximating gj, with a function made up of the sum of a linear fit and a truncated Fourier series of cosines and minimizing a penalized least-squares loss function over the coefficients. This finite-dimensional basis approximation, when fitting an additive model with r predictors, has the advantage of reducing the computations drastically, since it does not require the use of the backfitting algorithm. The cross-validation (CV) [or generalized cross-validation (GCV)] for the additive fit is calculated in a further 0(n) operations. A search path in the r-dimensional space of degrees of freedom is proposed along which the CV (GCV) continuously decreases. The path ends when an increase in the degrees of freedom of any of the predictors yields an increase in CV (GCV). This procedure is illustrated on a meteorological data set. 相似文献
12.
The most popular approach in extreme value statistics is the modelling of threshold exceedances using the asymptotically motivated generalised Pareto distribution. This approach involves the selection of a high threshold above which the model fits the data well. Sometimes, few observations of a measurement process might be recorded in applications and so selecting a high quantile of the sample as the threshold leads to almost no exceedances. In this paper we propose extensions of the generalised Pareto distribution that incorporate an additional shape parameter while keeping the tail behaviour unaffected. The inclusion of this parameter offers additional structure for the main body of the distribution, improves the stability of the modified scale, tail index and return level estimates to threshold choice and allows a lower threshold to be selected. We illustrate the benefits of the proposed models with a simulation study and two case studies. 相似文献
13.
AbstractThis article is devoted to study the problem of test of periodicity in the restricted exponential autoregressive (EXPAR) model. The local asymptotic normality property, of this model, is shown via the adapted sufficient conditions due to Swensen (1985). Using this result, in the case where the innovation density is specified, we obtain a parametric local asymptotic “most stringent” test. 相似文献
14.
Abstract. The last decade methods for quantifying the research output of individual researchers have become quite popular in academic policy making. The h‐index (or Hirsch index) constitutes an interesting combined bibliometric volume/impact indicator that has attracted a lot of attention recently. It is now a common indicator, available for instance on the Web of Science. In this article, we establish the asymptotic normality of the empirical h‐index. The rate of convergence is non‐standard: , where f is the density of the citation distribution and n is the number of publications of a researcher. In case that the citations follow a Pareto‐type respectively a Weibull‐type distribution as defined in extreme value theory, our general result specializes well to results that are useful for practical purposes such as the construction of confidence intervals and pairwise comparisons for the h‐index. A simulation study for the Pareto‐type case shows that the asymptotic theory works well for moderate sample sizes already. 相似文献
15.
16.
Guangren Yang Sumin Hou Luheng Wang Yanqing Sun 《Journal of Statistical Computation and Simulation》2018,88(6):1117-1133
The additive Cox model is flexible and powerful for modelling the dynamic changes of regression coefficients in the survival analysis. This paper is concerned with feature screening for the additive Cox model with ultrahigh-dimensional covariates. The proposed screening procedure can effectively identify active predictors. That is, with probability tending to one, the selected variable set includes the actual active predictors. In order to carry out the proposed procedure, we propose an effective algorithm and establish the ascent property of the proposed algorithm. We further prove that the proposed procedure possesses the sure screening property. Furthermore, we examine the finite sample performance of the proposed procedure via Monte Carlo simulations, and illustrate the proposed procedure by a real data example. 相似文献
17.
18.
We consider local linear estimation of varying-coefficient models in which the data are observed with multiplicative distortion which depends on an observed confounding variable. At first, each distortion function is estimated by non parametrically regressing the absolute value of contaminated variable on the confounder. Secondly, the coefficient functions are estimated by the local least square method on the basis of the predictors of latent variables, which are obtained in terms of the estimated distorting functions. We also establish the asymptotic normality of our proposed estimators and discuss the inference about the distortion function. Simulation studies are carried out to assess the finite sample performance of the proposed estimators and a real dataset of Pima Indians diabetes is analyzed for illustration. 相似文献
19.
AbstractThis article considers linear models with a spatial autoregressive error structure. Extending Arnold and Wied (2010), who develop an improved generalized method of moment (GMM) estimator for the parameters of the disturbance process to reduce the bias of existing estimation approaches, we establish the asymptotic normality of a new weighted version of this improved estimator and derive the efficient weighting matrix. We also show that this efficiently weighted GMM estimator is feasible as long as the regression matrix of the underlying linear model is non stochastic and illustrate the performance of the new estimator by a Monte Carlo simulation and an application to real data. 相似文献
20.
Robert L. Paige A. Alexandre Trindade 《Australian & New Zealand Journal of Statistics》2013,55(1):25-41
A fast and accurate method of confidence interval construction for the smoothing parameter in penalised spline and partially linear models is proposed. The method is akin to a parametric percentile bootstrap where Monte Carlo simulation is replaced by saddlepoint approximation, and can therefore be viewed as an approximate bootstrap. It is applicable in a quite general setting, requiring only that the underlying estimator be the root of an estimating equation that is a quadratic form in normal random variables. This is the case under a variety of optimality criteria such as those commonly denoted by maximum likelihood (ML), restricted ML (REML), generalized cross validation (GCV) and Akaike's information criteria (AIC). Simulation studies reveal that under the ML and REML criteria, the method delivers a near‐exact performance with computational speeds that are an order of magnitude faster than existing exact methods, and two orders of magnitude faster than a classical bootstrap. Perhaps most importantly, the proposed method also offers a computationally feasible alternative when no known exact or asymptotic methods exist, e.g. GCV and AIC. An application is illustrated by applying the methodology to well‐known fossil data. Giving a range of plausible smoothed values in this instance can help answer questions about the statistical significance of apparent features in the data. 相似文献