首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A modified maximum likelihood estimator (MMLE) of scale parameter is considered under moving extremes ranked set sampling (MERSS), and its properties are obtained. For some usual scale distributions, we obtain explicit form of the MMLE and prove the MMLE is an unbiased estimator under MERSS. The simulation results show that the MMLE using MERSS is always more efficient than the MLE using simple random sampling, when the same sample size is used. The simulation results also show that the loss of efficiency in using the MMLE instead of the MLE is very small for small sample.  相似文献   

2.
An identity for exponential distributions with an unknown common location parameter and unknown and possibly unequal scale parameters is established.Through use of the identity the maximum likelihood estimator (MLE) and the uniformly minimum variance unbiased estimator (UMVUE) of a quantile of an exponential population are compared under the squared error loss.A class of estimators dominating both MLE and UMVUE is obtained by using the identity.  相似文献   

3.
The presence of a nuisance parameter may often perturb the quality of the likelihood-based inference for a parameter of interest under small to moderate sample sizes. The article proposes a maximal scale invariant transformation for likelihood-based inference for the shape in a shape-scale family to circumvent the effect of the nuisance scale parameter. The transformation can be used under complete or type-II censored samples. Simulation-based performance evaluation of the proposed estimator for the popular Weibull, Gamma and Generalized exponential distribution exhibits markedly improved performance in all types of likelihood-based inference for the shape under complete and type-II censored samples. The simulation study leads to a linear relation between the bias of the classical maximum likelihood estimator (MLE) and the transformation-based MLE for the popular Weibull and Gamma distributions. The linearity is exploited to suggest an almost unbiased estimator of the shape parameter for these distributions. Allied estimation of scale is also discussed.  相似文献   

4.
This paper deals with the estimation of R=P[X<Y] when X and Y come from two independent generalized logistic distributions with different parameters. The maximum-likelihood estimator (MLE) and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Assuming that the common scale parameter is known, the MLE, uniformly minimum variance unbiased estimator, Bayes estimation and confidence interval of R are obtained. The MLE of R, asymptotic distribution of R in the general case, is also discussed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real data set has also been presented for illustrative purposes.  相似文献   

5.
The scaled (two-parameter) Type I generalized logistic distribution (GLD) is considered with the known shape parameter. The ML method does not yield an explicit estimator for the scale parameter even in complete samples. In this article, we therefore construct a new linear estimator for scale parameter, based on complete and doubly Type-II censored samples, by making linear approximations to the intractable terms of the likelihood equation using least-squares (LS) method, a new approach of linearization. We call this as linear approximate maximum likelihood estimator (LAMLE). We also construct LAMLE based on Taylor series method of linear approximation and found that this estimator is slightly biased than that based on the LS method. A Monte Carlo simulation is used to investigate the performance of LAMLE and found that it is almost as efficient as MLE, though biased than MLE. We also compare unbiased LAMLE with BLUE based on the exact variances of the estimators and interestingly this new unbiased LAMLE is found just as efficient as the BLUE in both complete and Type-II censored samples. Since MLE is known as asymptotically unbiased, in large samples we compare unbiased LAMLE with MLE and found that this estimator is almost as efficient as MLE. We have also discussed interval estimation of the scale parameter from complete and Type-II censored samples. Finally, we present some numerical examples to illustrate the construction of the new estimators developed here.  相似文献   

6.
Estimation of Weibull distribution shape and scale parameters is accomplished through use of symmetrically located percentiles from a sample. The process requires algebraic solution of two equations derived from the cumulative distribution function. Three alternatives examined are compared for precision and variability with maximum likelihood (MLE) and least squares (LS) estimators. The best percentile estimator (using the 10th and 90th) is inferior to MLE in variability and to one least squares estimator in accuracy and variability to a small degree. However, application of a correction factor related to sample size improves the percentile estimator substantially, making it more accurate than LS.  相似文献   

7.
In this paper, we consider the maximum likelihood estimator (MLE) of the scale parameter of the generalized exponential (GE) distribution based on a random censoring model. We assume the censoring distribution also follows a GE distribution. Since the estimator does not provide an explicit solution, we propose a simple method of deriving an explicit estimator by approximating the likelihood function. In order to compare the performance of the estimators, Monte Carlo simulation is conducted. The results show that the MLE and the approximate MLE are almost identical in terms of bias and variance.  相似文献   

8.
Consider the problem of estimating the common location parameter of two exponential populations using record data when the scale parameters are unknown. We derive the maximum likelihood estimator (MLE), the modified maximum likelihood estimator (MMLE) and the uniformly minimum variance unbiased estimator (UMVUE) of the common location parameter. Further, we derive a general result for inadmissibility of an equivariant estimator under the scaled-squared error loss function. Using this result, we conclude that the MLE and the UMVUE are inadmissible and better estimators are provided. A simulation study is conducted for comparing the performances of various competing estimators.  相似文献   

9.
Based on a progressively type II censored sample, the maximum likelihood and Bayes estimators of the scale parameter of the half-logistic distribution are derived. However, since the maximum likelihood estimator (MLE) and Bayes estimator do not exist in an explicit form for the scale parameter, we consider a simple method of deriving an explicit estimator by approximating the likelihood function and derive the asymptotic variances of MLE and approximate MLE. Also, an approximation based on the Laplace approximation (Tierney and Kadane in J Am Stat Assoc 81:82–86, 1986) and importance sampling methods are used for obtaining the Bayes estimator. In order to compare the performance of the MLE, approximate MLE and Bayes estimates of the scale parameter, we use Monte Carlo simulation.  相似文献   

10.
This paper deals with the estimation of the parameters of doubly truncated and singly truncated normal distributions when truncation points are known. We derive, for these families, a necessary and sufficient condition for the maximum likelihood estimator(MLE) to be finite. Furthermore, the probability of the MLE being infinite is positive. A simulation study for single truncation is carried out to compare the modified maximum likelihood estimator, and the mixed estimator.  相似文献   

11.
In this paper, we consider the maximum likelihood and Bayes estimation of the scale parameter of the half-logistic distribution based on a multiply type II censored sample. However, the maximum likelihood estimator(MLE) and Bayes estimator do not exist in an explicit form for the scale parameter. We consider a simple method of deriving an explicit estimator by approximating the likelihood function and discuss the asymptotic variances of MLE and approximate MLE. Also, an approximation based on the Laplace approximation (Tierney & Kadane, 1986) is used to obtain the Bayes estimator. In order to compare the MLE, approximate MLE and Bayes estimates of the scale parameter, Monte Carlo simulation is used.  相似文献   

12.
Compared to Type-II censoring, multiply Type-II censoring is a more general, yet mathematically and numerically much more complicated censoring scheme. For multiply Type II censored data from a two-parameter Weibull distribution, we propose several estimators, including MLE, approximate MLE, and estimators corresponding to the BLUE and BLIE from estimating parameters in extreme-value distribution. An approximately unbiased estimator for the shape parameter is also proposed which has the smallest MSE. Numerical examples show that this estimator is the best in terms of bias and MSE. Numerical examples also show that the approximate MLE which admits a closed form is better for estimating the scale parameter.  相似文献   

13.
The problem of estimation of an unknown common scale parameter of several Pareto distributions with unknown and possibly unequal shape parameters in censored samples is considered. A new class of estimators which includes both the maximum likelihood estimator (MLE) and the uniformly minimum variance unbiased estimator (UMVUE) is proposed and examined under a squared error loss.  相似文献   

14.
We draw here on the relation between the Cauchy and hyperbolic secant distributions to prove that the MLE of the scale parameter of the Cauchy distribution is log-normally distributed and to study the properties of a Hodges-Lehmann type estimator for the scale parameter. This scale estimator is slightly biased but performs well even on small samples regardless of the location parameter. The asymptotic efficiency of the estimator is 98%.  相似文献   

15.
In this paper, we briefly overview different zero-inflated probability distributions. We compare the performance of the estimates of Poisson, Generalized Poisson, ZIP, ZIGP and ZINB models through Mean square error (MSE), bias and Standard error (SE) when the samples are generated from ZIP distribution. We propose a new estimator referred to as probability estimator (PE) of inflation parameter of ZIP distribution based on moment estimator (ME) of the mean parameter and compare its performance with ME and maximum likelihood estimator (MLE) through a simulation study. We use the PE along with ME and MLE to fit ZIP distribution to various zero-inflated datasets and observe that the results do not differ significantly. We recommend using PE in place of MLE since it is easy to calculate and the simulation study in this paper demonstrates that the PE performs as good as MLE irrespective of the sample size.  相似文献   

16.
In this paper, inference for the scale parameter of lifetime distribution of a k-unit parallel system is provided. Lifetime distribution of each unit of the system is assumed to be a member of a scale family of distributions. Maximum likelihood estimator (MLE) and confidence intervals for the scale parameter based on progressively Type-II censored sample are obtained. A β-expectation tolerance interval for the lifetime of the system is obtained. As a member of the scale family, half-logistic distribution is considered and the performance of the MLE, confidence intervals and tolerance intervals are studied using simulation.  相似文献   

17.
Based on a multiply type-II censored sample, the maximum likelihood estimator (MLE) and Bayes estimator for the scale parameter and the reliability function of the Rayleigh distribution are derived. However, since the MLE does not exist an explicit form, an approximate MLE which is the maximizer of an approximate likelihood function will be given. The comparisons among estimators are investigated through Monte Carlo simulations. An illustrative example with the real data concerning the 23 ball bearing in the life test is presented.  相似文献   

18.
We consider parametric regression problems with some covariates missing at random. It is shown that the regression parameter remains identifiable under natural conditions. When the always observed covariates are discrete, we propose a semiparametric maximum likelihood method, which does not require parametric specification of the missing data mechanism or the covariate distribution. The global maximum likelihood estimator (MLE), which maximizes the likelihood over the whole parameter set, is shown to exist under simple conditions. For ease of computation, we also consider a restricted MLE which maximizes the likelihood over covariate distributions supported by the observed values. Under regularity conditions, the two MLEs are asymptotically equivalent and strongly consistent for a class of topologies on the parameter set.  相似文献   

19.
?iray et al. proposed a restricted Liu estimator to overcome multicollinearity in the logistic regression model. They also used a Monte Carlo simulation to study the properties of the restricted Liu estimator. However, they did not present the theoretical result about the mean squared error properties of the restricted estimator compared to MLE, restricted maximum likelihood estimator (RMLE) and Liu estimator. In this article, we compare the restricted Liu estimator with MLE, RMLE and Liu estimator in the mean squared error sense and we also present a method to choose a biasing parameter. Finally, a real data example and a Monte Carlo simulation are conducted to illustrate the benefits of the restricted Liu estimator.  相似文献   

20.
The maximum likelihood estimator (MLE) for the survival function STunder the proportional hazards model of censorship is derived and shown to differ from the Abdushukurov-Cheng-Lin estimator when the class of allowable distributions includes all continuous and discrete distributions. The estimators are compared via an example. The MLE is calculated using a Newton-Raphson iterative procedure and implemented via a FORTRAN algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号