首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper proposes the use of the Bernstein–Dirichlet process prior for a new nonparametric approach to estimating the link function in the single-index model (SIM). The Bernstein–Dirichlet process prior has so far mainly been used for nonparametric density estimation. Here we modify this approach to allow for an approximation of the unknown link function. Instead of the usual Gaussian distribution, the error term is assumed to be asymmetric Laplace distributed which increases the flexibility and robustness of the SIM. To automatically identify truly active predictors, spike-and-slab priors are used for Bayesian variable selection. Posterior computations are performed via a Metropolis-Hastings-within-Gibbs sampler using a truncation-based algorithm for stick-breaking priors. We compare the efficiency of the proposed approach with well-established techniques in an extensive simulation study and illustrate its practical performance by an application to nonparametric modelling of the power consumption in a sewage treatment plant.  相似文献   

2.
3.
Some alternative estimators to the maximum likelihood estimators of the two parameters of the Birnbaum–Saunders distribution are proposed. Most have high efficiencies as measured by root mean square error and are robust to departure from the model as well as to outliers. In addition, the proposed estimators are easy to compute. Both complete and right-censored data are discussed. Simulation studies are provided to compare the performance of the estimators.  相似文献   

4.
ABSTRACT

Let us consider that the variance function or its νth derivative in a regression model has a change/discontinuity point at an unknown location. To use the local polynomial fits, the log-variance function which break the positivity is targeted. The location and the jump size of the change point are estimated based on a one-sided kernel-weighted local-likelihood function which is provided by the χ2-distribution. The whole structure of the log-variance function is then estimated using the data sets split by the estimated location. Asymptotic results of the proposed estimators are described. Numerical works demonstrate the performances of the methods with simulated and real examples.  相似文献   

5.
In the present paper, we introduce and study a class of distributions that has the linear mean residual quantile function. Various distributional properties and reliability characteristics of the class are studied. Some characterizations of the class of distributions are presented. We then present generalizations of this class of distributions using the relationship between various quantile based reliability measures. The method of L-moments is employed to estimate parameters of the class of distributions. Finally, we apply the proposed class of distributions to a real data set.  相似文献   

6.
The linear mixed model with an added integrated Ornstein–Uhlenbeck (IOU) process (linear mixed IOU model) allows for serial correlation and estimation of the degree of derivative tracking. It is rarely used, partly due to the lack of available software. We implemented the linear mixed IOU model in Stata and using simulations we assessed the feasibility of fitting the model by restricted maximum likelihood when applied to balanced and unbalanced data. We compared different (1) optimization algorithms, (2) parameterizations of the IOU process, (3) data structures and (4) random-effects structures. Fitting the model was practical and feasible when applied to large and moderately sized balanced datasets (20,000 and 500 observations), and large unbalanced datasets with (non-informative) dropout and intermittent missingness. Analysis of a real dataset showed that the linear mixed IOU model was a better fit to the data than the standard linear mixed model (i.e. independent within-subject errors with constant variance).  相似文献   

7.
8.
Based on a multiply type-II censored sample, the maximum likelihood estimator (MLE) and Bayes estimator for the scale parameter and the reliability function of the Rayleigh distribution are derived. However, since the MLE does not exist an explicit form, an approximate MLE which is the maximizer of an approximate likelihood function will be given. The comparisons among estimators are investigated through Monte Carlo simulations. An illustrative example with the real data concerning the 23 ball bearing in the life test is presented.  相似文献   

9.
This article proposes semiparametric generalized least-squares estimation of parametric restrictions between the conditional mean and the conditional variance of excess returns given a set of parametric factors. A distinctive feature of our estimator is that it does not require a fully parametric model for the conditional mean and variance. We establish consistency and asymptotic normality of the estimates. The theory is nonstandard due to the presence of estimated factors. We provide sufficient conditions for the estimated factors not to have an impact in the asymptotic standard error of estimators. A simulation study investigates the finite sample performance of the estimates. Finally, an application to the CRSP value-weighted excess returns highlights the merits of our approach. In contrast to most previous studies using nonparametric estimates, we find a positive and significant price of risk in our semiparametric setting.  相似文献   

10.
11.
The Dabrowska (Ann Stat 16:1475–1489, 1988) product integral representation of the multivariate survivor function is extended, leading to a nonparametric survivor function estimator for an arbitrary number of failure time variates that has a simple recursive formula for its calculation. Empirical process methods are used to sketch proofs for this estimator’s strong consistency and weak convergence properties. Summary measures of pairwise and higher-order dependencies are also defined and nonparametrically estimated. Simulation evaluation is given for the special case of three failure time variates.  相似文献   

12.
In this work, a simulation study is conducted to evaluate the performance of Bayesian estimators for the log–linear exponential regression model under different levels of censoring and degrees of collinearity for two covariates. The diffuse normal, independent Student-t and multivariate Student-t distributions are considered as prior distributions and to draw from the posterior distributions, the Metropolis algorithm is implemented. Also, the results are compared with the maximum likelihood estimators in terms of the mean squared error, coverages and length of the credibility and confidence intervals.  相似文献   

13.
ABSTRACT

We present an adaptive method for the automatic scaling of random-walk Metropolis–Hastings algorithms, which quickly and robustly identifies the scaling factor that yields a specified overall sampler acceptance probability. Our method relies on the use of the Robbins–Monro search process, whose performance is determined by an unknown steplength constant. Based on theoretical considerations we give a simple estimator of this constant for Gaussian proposal distributions. The effectiveness of our method is demonstrated with both simulated and real data examples.  相似文献   

14.
In this note we consider the equality of the ordinary least squares estimator (OLSE) and the best linear unbiased estimator (BLUE) of the estimable parametric function in the general Gauss–Markov model. Especially we consider the structures of the covariance matrix V for which the OLSE equals the BLUE. Our results are based on the properties of a particular reparametrized version of the original Gauss–Markov model.   相似文献   

15.
In longitudinal studies, an individual may potentially undergo a series of repeated recurrence events. The gap times, which are referred to as the times between successive recurrent events, are typically the outcome variables of interest. Various regression models have been developed in order to evaluate covariate effects on gap times based on recurrence event data. The proportional hazards model, additive hazards model, and the accelerated failure time model are all notable examples. Quantile regression is a useful alternative to the aforementioned models for survival analysis since it can provide great flexibility to assess covariate effects on the entire distribution of the gap time. In order to analyze recurrence gap time data, we must overcome the problem of the last gap time subjected to induced dependent censoring, when numbers of recurrent events exceed one time. In this paper, we adopt the Buckley–James-type estimation method in order to construct a weighted estimation equation for regression coefficients under the quantile model, and develop an iterative procedure to obtain the estimates. We use extensive simulation studies to evaluate the finite-sample performance of the proposed estimator. Finally, analysis of bladder cancer data is presented as an illustration of our proposed methodology.  相似文献   

16.
The main purpose of this article is to estimate the underlying covariate distribution with a biased capture–recapture sample. Two procedures are proposed, and the derived estimates are found to be consistent and asymptotically normal. The proposed methods are compared and are shown to perform well in most circumstances via simulation study, and are applied to a real example.  相似文献   

17.
In this article, we consider the multiple regression model in the presence of multicollinearity and study the performance of the preliminary test estimator (PTE) both analytically and computationally, when it is a priori suspected that some constraints may hold on the vector parameter space. The performance of the PTE is further analyzed by comparing the risk of some well-known estimators of the ridge parameter through an extensive Monte Carlo simulation study under some bounded and or asymmetric loss functions. An application of the Cobb–Douglas production function is included and from these results as well as the simulation studies, it is clear that the bounded linear exponential loss function outperforms the other loss functions across all the proposed ridge parameters by comparing the risk values.  相似文献   

18.
19.
This article deals with the Bayesian and non Bayesian estimation of multicomponent stress–strength reliability by assuming the Kumaraswamy distribution. Both stress and strength are assumed to have a Kumaraswamy distribution with common and known shape parameter. The reliability of such a system is obtained by the methods of maximum likelihood and Bayesian approach and the results are compared using Markov Chain Monte Carlo (MCMC) technique for both small and large samples. Finally, two data sets are analyzed for illustrative purposes.  相似文献   

20.
In this paper, we are mainly interested in estimating the reliability R=P(X>Y) in the Marshall–Olkin extended Lomax distribution, recently proposed by Ghitany et al. [Marshall–Olkin extended Lomax distribution and its application, Commun. Statist. Theory Methods 36 (2007), pp. 1855–1866]. The model arises as a proportional odds model where the covariate effect is replaced by an additional parameter. Maximum likelihood estimators of the parameters are developed and an asymptotic confidence interval for R is obtained. Extensive simulation studies are carried out to investigate the performance of these intervals. Using real data we illustrate the procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号