首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
We propose kernel density estimators based on prebinned data. We use generalized binning schemes based on the quantiles points of a certain auxiliary distribution function. Therein the uniform distribution corresponds to usual binning. The statistical accuracy of the resulting kernel estimators is studied, i.e. we derive mean squared error results for the closeness of these estimators to both the true function and the kernel estimator based on the original data set. Our results show the influence of the choice of the auxiliary density on the binned kernel estimators and they reveal that non-uniform binning can be worthwhile.  相似文献   

2.
3.
A new nonparametric quantile regression method based on the concept of optimal quantization was developed recently and was showed to provide estimators that often dominate their classical, kernel-type, competitors. In the present work, we extend this method to multiple-output regression problems. We show how quantization allows approximating population multiple-output regression quantiles based on halfspace depth. We prove that this approximation becomes arbitrarily accurate as the size of the quantization grid goes to infinity. We also derive a weak consistency result for a sample version of the proposed regression quantiles. Through simulations, we compare the performances of our estimators with (local constant and local bilinear) kernel competitors. The results reveal that the proposed quantization-based estimators, which are local constant in nature, outperform their kernel counterparts and even often dominate their local bilinear kernel competitors. The various approaches are also compared on artificial and real data.  相似文献   

4.
Kernel density estimation is probably the most widely used non parametric statistical method for estimating probability densities. In this paper, we investigate the performance of kernel density estimator based on stratified simple and ranked set sampling. Some asymptotic properties of kernel estimator are established under both sampling schemes. Simulation studies are designed to examine the performance of the proposed estimators under varying distributional assumptions. These findings are also illustrated with the help of a dataset on bilirubin levels in babies in a neonatal intensive care unit.  相似文献   

5.
Abstract. Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern h 4 bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k -NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.  相似文献   

6.
In this paper, we propose and evaluate the performance of different parametric and nonparametric estimators for the population coefficient of variation considering Ranked Set Sampling (RSS) under normal distribution. The performance of the proposed estimators was assessed based on the bias and relative efficiency provided by a Monte Carlo simulation study. An application in anthropometric measurements data from a human population is also presented. The results showed that the proposed estimators via RSS present an expressively lower mean squared error when compared to the usual estimator, obtained via Simple Random Sampling. Also, it was verified the superiority of the maximum likelihood estimator, given the necessary assumptions of normality and perfect ranking are met.  相似文献   

7.
In this paper, we study the non parametric estimation of drift coefficient and diffusion coefficient in the second-order diffusion equation by using the asymmetric kernel functions, based on the difference of discrete time observations. The basic idea relies upon replacing the symmetric kernel by asymmetric kernel and provides a new way of obtaining the non parametric estimation for second-order diffusion equation. Under the appropriate assumptions, we prove that the proposed estimators of second-order diffusion equation are consistent and asymptotically follow normal distribution.  相似文献   

8.
In this paper a model is proposed which represents a wide class of continuous distributions. It is shown how the parameters of this model can be estimated leading to a distribution estimator and a corresponding density estimator. An important property of this estimator is that it can be structured to reflect a priori knowledge of the unknown distribution.

Finally, some examples are shown and some comparisons made with kernel and orthogonal series estimators.  相似文献   

9.
In this article, we propose a nonparametric estimator for percentiles of the time-to-failure distribution obtained from a linear degradation model using the kernel density method. The properties of the proposed kernel estimator are investigated and compared with well-known maximum likelihood and ordinary least squares estimators via a simulation technique. The mean squared error and the length of the bootstrap confidence interval are used as the basis criteria of the comparisons. The simulation study shows that the performance of the kernel estimator is acceptable as a general estimator. When the distribution of the data is assumed to be known, the maximum likelihood and ordinary least squares estimators perform better than the kernel estimator, while the kernel estimator is superior when the assumption of our knowledge of the data distribution is violated. A comparison among different estimators is achieved using a real data set.  相似文献   

10.
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.  相似文献   

11.
We obtain an estimator of the r th central moment of a distribution, which is unbiased for all distributions for which the first r moments exist. We do this by finding the kernel which allows the r th central moment to be written as a regular statistical functional. The U-statistic associated with this kernel is the unique symmetric unbiased estimator of the r th central moment, and, for each distribution, it has minimum variance among all estimators which are unbiased for all these distributions.  相似文献   

12.
Marron  J. S.  Udina  F. 《Statistics and Computing》1999,9(2):101-110
A tool for user choice of the local bandwidth function for kernel density and nonparametric regression estimates is developed using KDE, a graphical object-oriented package for interactive kernel density estimation written in LISP-STAT. The bandwidth function is a parameterized spline, whose knots are manipulated by the user in one window, while the resulting estimate appears in another window. A real data illustration of this method raises concerns, because an extremely large family of estimates is available. Suggestions are made to overcome this problem so that this tool can be used effectively for presenting final results of a data analysis.  相似文献   

13.
Many commonly used statistical methods for data analysis or clinical trial design rely on incorrect assumptions or assume an over‐simplified framework that ignores important information. Such statistical practices may lead to incorrect conclusions about treatment effects or clinical trial designs that are impractical or that do not accurately reflect the investigator's goals. Bayesian nonparametric (BNP) models and methods are a very flexible new class of statistical tools that can overcome such limitations. This is because BNP models can accurately approximate any distribution or function and can accommodate a broad range of statistical problems, including density estimation, regression, survival analysis, graphical modeling, neural networks, classification, clustering, population models, forecasting and prediction, spatiotemporal models, and causal inference. This paper describes 3 illustrative applications of BNP methods, including a randomized clinical trial to compare treatments for intraoperative air leaks after pulmonary resection, estimating survival time with different multi‐stage chemotherapy regimes for acute leukemia, and evaluating joint effects of targeted treatment and an intermediate biological outcome on progression‐free survival time in prostate cancer.  相似文献   

14.
Effectively solving the label switching problem is critical for both Bayesian and Frequentist mixture model analyses. In this article, a new relabeling method is proposed by extending a recently developed modal clustering algorithm. First, the posterior distribution is estimated by a kernel density from permuted MCMC or bootstrap samples of parameters. Second, a modal EM algorithm is used to find the m! symmetric modes of the KDE. Finally, samples that ascend to the same mode are assigned the same label. Simulations and real data applications demonstrate that the new method provides more accurate estimates than many existing relabeling methods.  相似文献   

15.
A local orthogonal polynomial expansion (LOrPE) of the empirical density function is proposed as a novel method to estimate the underlying density. The estimate is constructed by matching localised expectation values of orthogonal polynomials to the values observed in the sample. LOrPE is related to several existing methods, and generalises straightforwardly to multivariate settings. By manner of construction, it is similar to local likelihood density estimation (LLDE). In the limit of small bandwidths, LOrPE functions as kernel density estimation (KDE) with high-order (effective) kernels inherently free of boundary bias, a natural consequence of kernel reshaping to accommodate endpoints. Consistency and faster asymptotic convergence rates follow. In the limit of large bandwidths LOrPE is equivalent to orthogonal series density estimation (OSDE) with Legendre polynomials, thereby inheriting its consistency. We compare the performance of LOrPE to KDE, LLDE, and OSDE, in a number of simulation studies. In terms of mean integrated squared error, the results suggest that with a proper balance of the two tuning parameters, bandwidth and degree, LOrPE generally outperforms these competitors when estimating densities with sharply truncated supports.  相似文献   

16.
In this work, we study the asymptotic properties of smoothed nonparametric kernel spectral density estimators for the spatial spectral density. We consider the case of continuous stationary spatial processes under a shrinking asymptotic framework. Expressions for the bias and the covariance structure are obtained and the implications for the edge effect bias of the choice of the kernel, bandwidth and spacing parameter in the design are also discussed, both for tapered and untapered estimates. Results are illustrated with a simulation study.  相似文献   

17.
Nonparametric estimation of the probability density function f° of a lifetime distribution based on arbitrarily right-censor-ed observations from f° has been studied extensively in recent years. In this paper the density estimators from censored data that have been obtained to date are outlined. Histogram, kernel-type, maximum likelihood, series-type, and Bayesian nonparametric estimators are included. Since estimation of the hazard rate function can be considered as giving a density estimate, all known results concerning nonparametric hazard rate estimation from censored samples are also briefly mentioned.  相似文献   

18.
Estimating a curve nonparametrically from data measured with error is a difficult problem that has been studied by many authors. Constructing a consistent estimator in this context can sometimes be quite challenging, and in this paper we review some of the tools that have been developed in the literature for kernel‐based approaches, founded on the Fourier transform and a more general unbiased score technique. We use those tools to rederive some of the existing nonparametric density and regression estimators for data contaminated by classical or Berkson errors, and discuss how to compute these estimators in practice. We also review some mistakes made by those working in the area, and highlight a number of problems with an existing R package decon .  相似文献   

19.
In this paper, we first introduce new entropy estimators for distributions with known and bounded supports. Our estimators are obtained by using constrained maximum likelihood estimation of cumulative distribution function for absolutely continuous distributions with known and bounded supports. We prove the consistency of our estimators. Then, we propose uniformity tests based on the proposed entropy estimators and compare their powers with the powers of other tests of uniformity. Our simulation results show that the proposed entropy estimators perform well in estimating entropy and testing uniformity.  相似文献   

20.
This paper introduces two estimators, a boundary corrected minimum variance kernel estimator based on a uniform kernel and a discrete frequency polygon estimator, for the cell probabilities of ordinal contingency tables. Simulation results show that the minimum variance boundary kernel estimator has a smaller average sum of squared error than the existing boundary kernel estimators. The discrete frequency polygon estimator is simple and easy to interpret, and it is competitive with the minimum variance boundary kernel estimator. It is proved that both estimators have an optimal rate of convergence in terms of mean sum of squared error, The estimators are also defined for high-dimensional tables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号