首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The Buckley–James estimator (BJE) is a well‐known estimator for linear regression models with censored data. Ritov has generalized the BJE to a semiparametric setting and demonstrated that his class of Buckley–James type estimators is asymptotically equivalent to the class of rank‐based estimators proposed by Tsiatis. In this article, we revisit such relationship in censored data with covariates missing by design. By exploring a similar relationship between our proposed class of Buckley–James type estimating functions to the class of rank‐based estimating functions recently generalized by Nan, Kalbfleisch and Yu, we establish asymptotic properties of our proposed estimators. We also conduct numerical studies to compare asymptotic efficiencies from various estimators.  相似文献   

2.
We examine a new rank correlation estimator, recently proposed by Bobrowski (Ranked modelling of risk on the basis of survival data. ICSMRA, Lisbon, 2007). It is obtained by minimization of a convex piece-wise linear criterion function. The main advantage of this estimator is the fact that it can be effectively computed by algorithms related to linear programming. We prove basic asymptotic theorems about the estimator: consistency and asymptotic normality.  相似文献   

3.
We show that the jackknife technique fails badly when applied to the problem of estimating the variance of a sample quantile. When viewed as a point estimator, the jackknife estimator is known to be inconsistent. We show that the ratio of the jackknife variance estimate to the true variance has an asymptotic Weibull distribution with parameters 1 and 1/2. We also show that if the jackknife variance estimate is used to Studentize the sample quantile, the asymptotic distribution of the resulting Studentized statistic is markedly nonnormal, having infinite mean. This result is in stark contrast with that obtained in simpler problems, such as that of constructing confidence intervals for a mean, where the jackknife-Studentized statistic has an asymptotic standard normal distribution.  相似文献   

4.
We investigate the estimators of parameters of interest for a single-index varying-coefficient model. To estimate the unknown parameter efficiently, we first estimate the nonparametric component using local linear smoothing, then construct an estimator of parametric component by using estimating equations. Our estimator for the parametric component is asymptotically efficient, and the estimator of nonparametric component has asymptotic normality and optimal uniform convergence rate. Our results provide ways to construct confidence regions for the involved unknown parameters. The finite-sample behavior of the new estimators is evaluated through simulation studies, and applications to two real data are illustrated.  相似文献   

5.
The author recalls the limiting behaviour of the empirical copula process and applies it to prove some asymptotic properties of a minimum distance estimator for a Euclidean parameter in a copula model. The estimator in question is semiparametric in that no knowledge of the marginal distributions is necessary. The author also proposes another semiparametric estimator which he calls “rank approximate Z‐estimator” and whose asymptotic normality he derives. He further presents Monte Carlo simulation results for the comparison of various estimators in four well‐known bivariate copula models.  相似文献   

6.
We consider the problem of data-based choice of the bandwidth of a kernel density estimator, with an aim to estimate the density optimally at a given design point. The existing local bandwidth selectors seem to be quite sensitive to the underlying density and location of the design point. For instance, some bandwidth selectors perform poorly while estimating a density, with bounded support, at the median. Others struggle to estimate a density in the tail region or at the trough between the two modes of a multimodal density. We propose a scale invariant bandwidth selection method such that the resulting density estimator performs reliably irrespective of the density or the design point. We choose bandwidth by minimizing a bootstrap estimate of the mean squared error (MSE) of a density estimator. Our bootstrap MSE estimator is different in the sense that we estimate the variance and squared bias components separately. We provide insight into the asymptotic accuracy of the proposed density estimator.  相似文献   

7.
This article is concerned with asymptotic theory for local estimators based on Bregman divergence. We consider a localized version of Bregman divergence induced by a kernel weight and minimize it to obtain the local estimator. We provide a rigorous proof for the asymptotic consistency of the local estimator in a situation where both the sample size and the bandwidth involved in the kernel weight increase. Asymptotic normality of the local estimator is also developed under the same asymptotic scenario. Monte Carlo simulations are also performed to confirm the theoretical results. The Canadian Journal of Statistics 47: 628–652; 2019 © 2019 Statistical Society of Canada  相似文献   

8.
This paper considers nonparametric regression estimation in the context of dependent biased nonnegative data using a generalized asymmetric kernel. It may be applied to a wider variety of practical situations, such as the length and size biased data. We derive theoretical results using a deep asymptotic analysis of the behavior of the estimator that provides consistency and asymptotic normality in addition to the evaluation of the asymptotic bias term. The asymptotic mean squared error is also derived in order to obtain the optimal value of smoothing parameters required in the proposed estimator. The results are stated under a stationary ergodic assumption, without assuming any traditional mixing conditions. A simulation study is carried out to compare the proposed estimator with the local linear regression estimate.  相似文献   

9.
This paper is concerned with the rank estimator for the parameter vector β in a linear model which is obtained by the minimization of a rank dispersion function. The rank estimator has many advantages over the regular least squares estimator, but the inaccessibility of software to carry out its computation has limited its use. An iterated reweighted least squares algorithm is presented for the computation of the rank estimator. The method is simple in concept and can be carried out readily with a wide variety of statistical software. Details of the method are discussed along with some results on its asymptotic distribution and numerical stability. Some examples are presented to show advantages of the rank method.  相似文献   

10.
We consider a partially linear model in which the vector of coefficients β in the linear part can be partitioned as ( β 1, β 2) , where β 1 is the coefficient vector for main effects (e.g. treatment effect, genetic effects) and β 2 is a vector for ‘nuisance’ effects (e.g. age, laboratory). In this situation, inference about β 1 may benefit from moving the least squares estimate for the full model in the direction of the least squares estimate without the nuisance variables (Steinian shrinkage), or from dropping the nuisance variables if there is evidence that they do not provide useful information (pretesting). We investigate the asymptotic properties of Stein‐type and pretest semiparametric estimators under quadratic loss and show that, under general conditions, a Stein‐type semiparametric estimator improves on the full model conventional semiparametric least squares estimator. The relative performance of the estimators is examined using asymptotic analysis of quadratic risk functions and it is found that the Stein‐type estimator outperforms the full model estimator uniformly. By contrast, the pretest estimator dominates the least squares estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an absolute penalty‐type estimator for partially linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty‐type estimators. The comparison shows that the shrinkage method performs better than the absolute penalty‐type estimation method when the dimension of the β 2 parameter space is large.  相似文献   

11.
We study the asymptotic behavior of the marginal expected shortfall when the two random variables are asymptotic independent but positively associated, which is modeled by the so-called tail dependent coefficient. We construct an estimator of the marginal expected shortfall, which is shown to be asymptotically normal. The finite sample performance of the estimator is investigated in a small simulation study. The method is also applied to estimate the expected amount of rainfall at a weather station given that there is a once every 100 years rainfall at another weather station nearby.  相似文献   

12.
Abstract. This article studies a method to estimate the parameters governing the distribution of a stationary marked Gibbs point process. This procedure, known as the Takacs–Fiksel method, is based on the estimation of the left and right hand sides of the Georgii–Nguyen–Zessin formula and leads to a family of estimators due to the possible choices of test functions. We propose several examples illustrating the interest and flexibility of this procedure. We also provide sufficient conditions based on the model and the test functions to derive asymptotic properties (consistency and asymptotic normality) of the resulting estimator. The different assumptions are discussed for exponential family models and for a large class of test functions. A short simulation study is proposed to assess the correctness of the methodology and the asymptotic results.  相似文献   

13.
The Buckley–James estimator (BJE) is a widely recognized approach in dealing with right-censored linear regression models. There have been a lot of discussions in the literature on the estimation of the BJE as well as its asymptotic distribution. So far, no simulation has been done to directly estimate the asymptotic variance of the BJE. Kong and Yu [Asymptotic distributions of the Buckley–James estimator under nonstandard conditions, Statist. Sinica 17 (2007), pp. 341–360] studied the asymptotic distribution under discontinuous assumptions. Based on their methodology, we recalculate and correct some missing terms in the expression of the asymptotic variance in Theorem 2 of their work. We propose an estimator of the standard deviation of the BJE by using plug-in estimators. The estimator is shown to be consistent. The performance of the estimator is accessed through simulation studies under discrete underline distributions. We further extend our studies to several continuous underline distributions through simulation. The estimator is also applied to a real medical data set. The simulation results suggest that our estimation is a good approximation to the true standard deviation with reference to the empirical standard deviation.  相似文献   

14.
ABSTRACT

We present a new estimator of extreme quantiles dedicated to Weibull tail distributions. This estimate is based on a consistent estimator of the Weibull tail coefficient. This parameter is defined as the regular variation coefficient of the inverse cumulative hazard function. We give conditions in order to obtain the weak consistency and the asymptotic distribution of the extreme quantiles estimator. Its asymptotic as well as its finite sample performances are compared to classical ones.  相似文献   

15.
Weighted log‐rank estimating function has become a standard estimation method for the censored linear regression model, or the accelerated failure time model. Well established statistically, the estimator defined as a consistent root has, however, rather poor computational properties because the estimating function is neither continuous nor, in general, monotone. We propose a computationally efficient estimator through an asymptotics‐guided Newton algorithm, in which censored quantile regression methods are tailored to yield an initial consistent estimate and a consistent derivative estimate of the limiting estimating function. We also develop fast interval estimation with a new proposal for sandwich variance estimation. The proposed estimator is asymptotically equivalent to the consistent root estimator and barely distinguishable in samples of practical size. However, computation time is typically reduced by two to three orders of magnitude for point estimation alone. Illustrations with clinical applications are provided.  相似文献   

16.
In this paper, we consider using a local linear (LL) smoothing method to estimate a class of discontinuous regression functions. We establish the asymptotic normality of the integrated square error (ISE) of a LL-type estimator and show that the ISE has an asymptotic rate of convergence as good as for smooth functions, and the asymptotic rate of convergence of the ISE of the LL estimator is better than that of the Nadaraya-Watson (NW) and the Gasser-Miiller (GM) estimators.  相似文献   

17.
In this article, we propose a semi-parametric mode regression for a non linear model. We use an expectation-maximization algorithm in order to estimate the regression coefficients of modal non linear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.  相似文献   

18.
We consider the problem of choosing among a class of possible estimators by selecting the estimator with the smallest bootstrap estimate of finite sample variance. This is an alternative to using cross-validation to choose an estimator adaptively. The problem of a confidence interval based on such an adaptive estimator is considered. We illustrate the ideas by applying the method to the problem of choosing the trimming proportion of an adaptive trimmed mean. It is shown that a bootstrap adaptive trimmed mean is asymptotically normal with an asymptotic variance equal to the smallest among trimmed means. The asymptotic coverage probability of a bootstrap confidence interval based on such adaptive estimators is shown to have the nominal level. The intervals based on the asymptotic normality of the estimator share the same asymptotic result, but have poor small-sample properties compared to the bootstrap intervals. A small-sample simulation demonstrates that bootstrap adaptive trimmed means adapt themselves rather well even for samples of size 10.  相似文献   

19.
We consider failure time regression analysis with an auxiliary variable in the presence of a validation sample. We extend the nonparametric inference procedure of Zhou and Pepe to handle a continuous auxiliary or proxy covariate. We estimate the induced relative risk function with a kernel smoother and allow the selection probability of the validation set to depend on the observed covariates. We present some asymptotic properties for the kernel estimator and provide some simulation results. The method proposed is illustrated with a data set from an on-going epidemiologic study.  相似文献   

20.
We establish a central limit theorem for multivariate summary statistics of nonstationary α‐mixing spatial point processes and a subsampling estimator of the covariance matrix of such statistics. The central limit theorem is crucial for establishing asymptotic properties of estimators in statistics for spatial point processes. The covariance matrix subsampling estimator is flexible and model free. It is needed, for example, to construct confidence intervals and ellipsoids based on asymptotic normality of estimators. We also provide a simulation study investigating an application of our results to estimating functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号