首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
This paper studies a shape‐invariant Engel curve system with endogenous total expenditure, in which the shape‐invariant specification involves a common shift parameter for each demographic group in a pooled system of nonparametric Engel curves. We focus on the identification and estimation of both the nonparametric shapes of the Engel curves and the parametric specification of the demographic scaling parameters. The identification condition relates to the bounded completeness and the estimation procedure applies the sieve minimum distance estimation of conditional moment restrictions, allowing for endogeneity. We establish a new root mean squared convergence rate for the nonparametric instrumental variable regression when the endogenous regressor could have unbounded support. Root‐n asymptotic normality and semiparametric efficiency of the parametric components are also given under a set of “low‐level” sufficient conditions. Our empirical application using the U.K. Family Expenditure Survey shows the importance of adjusting for endogeneity in terms of both the nonparametric curvatures and the demographic parameters of systems of Engel curves.  相似文献   

2.
We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n‐1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.  相似文献   

3.
We study the asymptotic distribution of Tikhonov regularized estimation of quantile structural effects implied by a nonseparable model. The nonparametric instrumental variable estimator is based on a minimum distance principle. We show that the minimum distance problem without regularization is locally ill‐posed, and we consider penalization by the norms of the parameter and its derivatives. We derive pointwise asymptotic normality and develop a consistent estimator of the asymptotic variance. We study the small sample properties via simulation results and provide an empirical illustration of estimation of nonlinear pricing curves for telecommunications services in the United States.  相似文献   

4.
This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. These models are often ill‐posed and hence it is difficult to verify whether a (possibly nonlinear) functional is root‐n estimable or not. We provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is root‐n estimable or not. We establish the following new useful results: (1) the asymptotic normality of a plug‐in penalized sieve minimum distance (PSMD) estimator of a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the plug‐in PSMD estimator, and hence the asymptotic chi‐square distribution of the sieve Wald statistic; (3) the asymptotic chi‐square distribution of an optimally weighted sieve quasi likelihood ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non‐optimally weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号