首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lead time that is short, predictable, and reliable is an increasingly important criterion in supplier selection. Although many companies may achieve this through lean implementation, high‐variety manufacturers, for example, small and medium‐sized make‐to‐order companies, have found that lean's planning and control techniques do not apply. This article outlines a planning and control concept known as workload control (WLC) that integrates customer enquiry management, including a due‐date setting rule, with order release control. Simulation is then used to assess its impact on shop performance. Results demonstrate that an integrated WLC concept can reduce the percentage of tardy jobs—so short lead times can be realistically quoted—while also reducing and stabilizing workloads. WLC can level demand and production over time when work is not standardized and it is not possible to synchronize flows on the shop floor. Results are shown to be robust to changes in routing characteristics, the mix of orders with due dates specified by the customer and proposed internally, and the strike rate (or order‐winning probability). Hence, an integrated approach to WLC represents an important step toward achieving lean in make‐to‐order companies.  相似文献   

2.
Every production planning concept that incorporates controlled order release will initially withhold jobs from the shop floor and create a pre‐shop pool. Order release is a key component of the Workload Control concept that aims to maintain work‐in‐process within limits while ensuring due dates are met. Order release includes two decisions: (i) a sequencing decision that establishes the order in which jobs are considered for release; and, (ii) a selection decision that determines the criteria for choosing jobs for release. While selection has received much research attention, sequencing has been largely neglected. Using simulation, this study uncovers the potential for performance improvement in the sequencing decision and improves our understanding of how order release methods should be designed. Although most prior studies apply time‐oriented sequencing rules and load‐oriented selection rules, analysis reveals that load balancing considerations should also be incorporated in the sequencing decision. But an exclusive focus on load balancing is shown to increase mean tardiness and, paradoxically, require high workloads. A new sequencing rule is developed that only balances loads when multiple orders become urgent. It avoids high mean tardiness and allows the shop to operate at a low workload level. At the same time, the percentage tardy is reduced by up to 50% compared to a purely time‐oriented rule. The findings have implications not only for Workload Control but for any concept that features order release control, such as ConWIP and Drum‐Buffer‐Rope.  相似文献   

3.
The primary objective of this study is to examine the performance of order-based dispatching rules in a general job shop, where the environmental factors are shop utilization and due date tightness. An order is defined as a collection of jobs that are shipped as a group—an order—to the customer, only on completion of the last job of the order. We specifically compare dispatching rules from past job-based studies to some rules adapted to encompass order characteristics. Standard flow time and tardiness measures are used, but in addition, we introduce measures that combine average performance with variation in an attempt to capture the performance of a majority of the orders processed in the shop. Of the 16 dispatching rules tested, our results show that four of the simple rules dominate the others. We also found that order-based rules perform better than their job-based counterparts. The study makes use of multivariate statistical analysis, in addition to the usual univariate tests, which can provide additional insight to managers using multiple criteria in their decision process.  相似文献   

4.
In the workload control literature, the Load-Oriented Order Release (LOOR) approach has been neglected since its robustness was questioned at the end of the 1990s. This paper revisits LOOR and evaluates whether its performance can be improved in two ways. First, an intermediate pull release mechanism is added to avoid starvation between periodic release events. This mechanism was recently shown to be effective at improving the performance of a state-of-the-art release method known as LUMS COR. Second, an integer linear programming model is used to manage the trade-off between the timing and load balancing functions of order release. The two refinements are assessed using simulations of different shop configurations, which allow us to evaluate robustness. Results demonstrate that the refinements contribute to improving the performance of LOOR such that it can even outperform LUMS COR. Perhaps counter-intuitively, putting more emphasis on load balancing than on the urgency of individual orders is shown to lead to a lower percentage of tardy orders. Overall, the improvements mean that concerns about LOOR’s robustness are no longer valid – it now appears suitable for a wide range of shops found in practice.  相似文献   

5.
This paper reports the results of a study of the use of heterogeneous dispatching rules for the scheduling of work in a job shop. The methodology employed included discrete event simulation, using rule combinations determined by prior genetic algorithm searches and generalization using neural networks. Eight dispatching rules were considered, including first in first out (FIFO), earliest due date ( EDD), shortest processing time (SPT), slack/ number of operations (SLK), critical ratio (CR), modified due date (MDD), modified operation due date (MOD), and apparent tardiness cost (ATC). A three-machine job shop was studied, in which three work organizations were employed, pure flow (fixed sequence), pure job shop ( random sequence), and a hybrid shop where flow is random but with unequal probabilities. Three levels of machine loading were used and average tardiness was used as the performance measure. In most cases, modified due date and apparent tardiness cost were the best rules. The application of the best rules effected the results primarily when applied to bottleneck machines or the first machine in a pure flow shop. Nearly any other rule was acceptable on non-botdeneck machines except FIFO and CR, which consistently perform poorly. No major advantage of mixing rules was found.  相似文献   

6.
This paper calls for a paradigm shift in the production control literature away from assuming due date setting and order release are two independent decision levels. When order release is controlled, jobs do not enter the shop floor directly but are retained in a pre-shop pool and released to meet certain performance targets. This makes the setting of accurate planned release dates – the point at which jobs transition from the pool to the shop floor – a key consideration when setting due dates. We develop a new approach to estimating planned release dates to be embedded in the Workload Control (WLC) concept. Our approach is unique as it anticipates the release decision as part of the due date setting procedure. This makes a second independent release decision superfluous and avoids a major cause of tardiness – deviations between (i) the planned release date used when calculating the delivery time allowance and (ii) the actual, realised release date. Simulation is used to compare the performance of WLC using two decision levels with the new single-level approach where the release decision is anticipated when setting the due date. Performance improvements are shown to be robust to uncertainty in processing time estimates.  相似文献   

7.
Priority dispatching rules and shop load affect job-shop performance. This paper evaluates ten different priority dispatching rules with respect to six different performance criteria under light, medium and heavy shop loads. Simulation was used as a tool to determine the rankings of the dispatching rules for a given shop load and performance criteria. A comparative study was conducted to investigate the performance of these rules. Two rules, ‘shortest processing time” and ‘least work remaining’, performed well under criteria related to the processing time. It was found that the rules that perform well in average and r.m.s. tardiness perform poorly under percentage-of-jobs-late criterion. The experimental results are conveyed with critical comments on the performance of the dispatching rules under different loading conditions of the shop.  相似文献   

8.
We investigate the performance of capacity-sensitive order review and release (ORR) procedures in job shop environments that have not been previously explored. Previous research has ignored the case of job shops which must perform to very tight due-dates because of time-sensitive customers. We propose and test a new capacity sensitive ORR procedure called path based bottleneck (PBB) in such environments, along with the modified infinite loading (MIL) procedure which has been shown to work well in several studies. We compare the performance of these two controlled release rules with that of immediate release rule under different conditions of capacity utilization and customer specified exogenous duedates. Our results indicate that PBB performs well in lowering total costs when due-dates are tight, while MIL is a better procedure with relatively loose to medium due-dates. We also show that in many cases, the shortest processing time (SPT) dispatching rule is a superior performer than a due-date based rule like critical ratio (CR); a conclusion which is contrary to the existing research in this area. In addition, the shop floor control policies recommended are shown to be sensitive to the cost structure of the firm. The managerial implications of this research in providing effective shop floor control in job shops operating under tight due-date conditions are also discussed.  相似文献   

9.
Workload control (WLC) is developed as a production planning and control concept for make-to-order job shops. Effective WLC requires a profound decision regarding order release to allow balancing the workload across capacity groups. WLC design has to reflect the company characteristics, especially machine characteristics. In practice, machines that perform the same type of operations are generally not completely identical but semi-interchangeable. The importance of the load balancing function requires careful consideration of semi-interchangeability within WLC. This paper develops different control alternatives to deal with semi-interchangeability and tests them in a simulation study. The results of the study indicate that the most intuitive control option—grouping semi-interchangeable machines into a single capacity group and making the routeing decision at dispatching—does not give the best performance, despite the advantages of pooling synergy. For a low degree of interchangeability it is more attractive to place semi-interchangeable machines in separate capacity groups and to make a routeing decision at order release. This enables more detailed load balancing resulting in shorter throughput times. More generally, it is shown to be advantageous to postpone the final routeing decision until dispatching, though considering separate capacity groups for a preliminary routeing decision at the time of release.  相似文献   

10.
Although order and labor dispatching in the job shop manufacturing setting have been investigated extensively over the last three decades, its representation of actual processes found in practice today is limited due to the move to cellular manufacturing (CM). Manufacturing cells have become an important approach to batch manufacturing in the last two decades, and their layout structure provides a dominant flow structure for the part routings. The flow shop nature of manufacturing cells adds a simplifying structure to the problem of planning worker assignments and order releases, which makes it more amenable to the use of optimization techniques. In this paper we exploit this characteristic and present two mathematical modeling approaches for making order dispatching and labor assignment/reassignment decisions in two different CM settings. The two formulations are evaluated in a dynamic simulation setting and compared to a heuristic procedure using tardiness as the primary performance measure. The formulations are superior to the heuristic approach and can be incorporated into detail scheduling systems that are being implemented by corporations employing enterprise resource planning (ERP) systems today.  相似文献   

11.

Although the academic contribution to job shop scheduling is abundant, its impact on practice has been minimal. The most preferred approach to job shop scheduling in the industry is dispatching rules. A major criticism against dispatching rules is that there is no single universal rule. The effective choice of dispatching rules depends on the scheduling criterion and existing job shop conditions. In this paper, the authors have proposed a scheduling method based on the analytic hierarchy process, that dynamically selects the most appropriate dispatching rule from several candidate rules. The selection is based on the existing job shop conditions. This method is applied to two formal job shop problems, and the results for single dispatching rules are inferior to the method proposed in this paper.  相似文献   

12.
While the majority of the literature on shop scheduling has emphasized time-based performance criteria such as mean flow time, lateness, and tardiness, the primary goal of management should be the maximization of shop profitability. In this research the net present value (NPV) criterion is introduced to measure shop profitability. This measure combines aspects of job flow time and inventory holding costs into a single measure. A simulation model of a job shop is used to examine the performance of a variety of time- and value-based scheduling rules. These rules are evaluated with respect to the NPV criterion in both random and flow shop environments. The results suggest that priority rules that utilize monetary information about jobs yield a higher NPV than many time-based rules in most situations, with little sacrifice in job tardiness. A well-researched time-based rule, critical ratio, also provides excellent performance when the shop is heavily loaded.  相似文献   

13.
This paper describes a global job shop scheduling procedure that uses a genetic algorithm to find a good schedule. Unlike previously considered algorithms, this procedure has been implemented in the scheduling system for a manufacturing facility and has led to improved scheduling. This facility is a semiconductor test area. The test area is a job shop and has sequence-dependent setup times at some operations. The concern of management is to meet their customer due dates and to increase throughput. This requires the coordination of many resources, a task beyond the ability of simple dispatching rules. We discuss a centralized procedure that can find a good schedule through the use of a detailed scheduling model and a genetic algorithm that searches over combinations of dispatching rules. We discuss our effort in developing a system that models the shop, creates schedules for the test area personnel, and makes a number of contributions to test area management.  相似文献   

14.

This work is an investigation about the relative effectiveness of two approaches to scheduling in flexible flow shops: one approach advocating the possible use of different dispatching rules at different stages of the flow shop, and the other suggesting the use of the same dispatching rule at all the stages of the flow shop. In the latter approach, the dispatching rule contains the information related to both process time and duedate. Both approaches aim at the minimization of measures related to flowtime and tardiness of jobs. This paper essentially is an attempt at exploring the relative effectiveness of these two approaches to scheduling.  相似文献   

15.
In this paper, a new order review/release (ORR) method is proposed for shop floor control systems. The proposed method utilizes both job due date and shop load information to improve the effectiveness of the ORR function in production systems. The performance of the new method is compared to those of a few well‐known ORR methods under four experimental conditions. The results of extensive simulation experiments indicate that the proposed method is superior with respect to the mean absolute deviation measure. In general, it is also better than existing methods for the other performance measures. Furthermore, we show that the proposed method is more robust to variations in system load and processing times than the other ORR methods examined.  相似文献   

16.
The literature on job scheduling recognizes the importance of due date performance criteria such as mean tardiness and maximum tardiness. A number of studies test a large number of sequencing rules for these criteria in job shop and flow shop settings. The object of this present research is to examine the performance of some well-known priority rules in a flow shop with multiple processors. This study investigates the performance of ten priority rules in terms of mean and maximum tardiness. It examines the effects of problem characteristics, such as number of jobs, number of machines stages and number of parallel processors at each stage, and the performance of priority rules using regression analysis. The findings of the study suggest that the primary determinants of tardiness-based criteria are problem characteristics. In addition, both the regression analysis and the analysis of variance provide strong evidence of the strategy-effect. Finally, a detailed performance review of examined priority rules for various problem characteristics is presented.  相似文献   

17.
This paper considers the application of cellular manufacturing (CM) to batch production by exploring the shop floor performance trade‐offs associated with shops employing different levels of CM. The literature has alluded to a continuum that exists between the purely departmentalized job shop and the completely cellular shop. However, the vast majority of CM research exists at the extremes of this continuum. Here, we intend to probe performance relationships by comparing shops that exist at different stages of CM adoption. Specifically, we begin with a hypothetical departmentalized shop found in the CM literature, and in a stepwise fashion, form independent cells. At each stage, flow time and tardiness performance is recorded. Modeling results indicate that, depending on shop conditions and managerial objectives, superior shop performance may be recorded by the job shop, the cell shop, or by one of the shops between these extreme points. In fact, under certain conditions, shops that contain partially formed cells perform better than shops that use completely formed cells. Additional results demonstrate that in order to achieve excellent performance, managers investigating specific layouts need to pay especially close attention to changes in machine utilization as machine groups are partitioned into cells.  相似文献   

18.
We investigate a shop where the workers and supervisors have tacit knowledge of how to operate efficiently and where efficiency is important to providing capacity to meet demand. This tacit knowledge includes setup dependencies between products as well as which worker or machine is best suited for a particular product. We discuss a real‐world shop where this is the case. Management expects workers and supervisors to use their knowledge to schedule efficiently by monitoring their performance based on standards. The question that we explore is how management should control for due date performance in light of the discretion given to the workers and supervisors to sequence jobs on the basis of efficiency. We explore management control of due date performance through the use of order review and release (ORR) and management expediting. We find that although ORR is quite effective at reducing work‐in‐process (WIP) inventories, it may foster very late deliveries in a shop such as this. In fact, under such conditions, deftly executed expediting with no ORR at all can be far more effective at supporting all deliveries. Even improving ORR into a hybrid by actively updating path efficiencies (observed from supervisor/worker scheduling) did not support a change to this conclusion. Conversely, when conditions are created where tacit knowledge plays a reduced role or utilization is decreased, ORR delivers in a timely manner. The interaction between utilization, WIP levels, and worker knowledge all help dictate the appropriate control methodology.  相似文献   

19.

DEWIP is a manufacturing control system for job shop environments aiming at achieving short and reliable lead times by establishing WIP control loops between the manufacturing work centres. The paper describes the mode of function, the setting of parameters and simulation results of the new manufacturing control system. The setting of parameters is done with the aid of the funnel model and the theory of logistic operating curves, both developed at the Institute of Production Systems at the University of Hanover. The simulation is conducted using industrial data and makes it possible to assess DEWIP with regard to lead times, WIP level, performance and schedule reliability. DEWIP is compared both with an uncontrolled process and with the manufacturing control systems Load oriented order release (LOOR), Conwip and Polca. The results suggest that DEWIP and the models employed for the setting of parameters are suitable for job shop production and therefore offer a valuable alternative to prevailing centralized manufacturing control systems.  相似文献   

20.
Depending on the techniques employed, the due date assignment, release, and sequencing procedures in job shop scheduling may depend on one another. This research investigates the effects of these interactions with a simulation model of a dynamic five-machine job shop in which early shipments are prohibited. Performance of the system is measured primarily in terms of the total cost (work-in-process cost, finished goods holding cost, and late penalty) incurred by the shop, but a number of non-cost performance measures are also reported. The results support existence of a three-way interaction between the due date, release, and sequencing procedures as well as interaction between shop utilization and procedure combination. Statistical tests are used to identify those rules that perform best both overall and in combination with other rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号