首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We propose two new methods for estimating models with nonseparable errors and endogenous regressors. The first method estimates a local average response. One estimates the response of the conditional mean of the dependent variable to a change in the explanatory variable while conditioning on an external variable and then undoes the conditioning. The second method estimates the nonseparable function and the joint distribution of the observable and unobservable explanatory variables. An external variable is used to impose an equality restriction, at two points of support, on the conditional distribution of the unobservable random term given the regressor and the external variable. Our methods apply to cross sections, but our lead examples involve panel data cases in which the choice of the external variable is guided by the assumption that the distribution of the unobservable variables is exchangeable in the values of the endogenous variable for members of a group.  相似文献   

2.
This paper uses control variables to identify and estimate models with nonseparable, multidimensional disturbances. Triangular simultaneous equations models are considered, with instruments and disturbances that are independent and a reduced form that is strictly monotonic in a scalar disturbance. Here it is shown that the conditional cumulative distribution function of the endogenous variable given the instruments is a control variable. Also, for any control variable, identification results are given for quantile, average, and policy effects. Bounds are given when a common support assumption is not satisfied. Estimators of identified objects and bounds are provided, and a demand analysis empirical example is given.  相似文献   

3.
I consider nonparametric identification of nonseparable instrumental variables models with continuous endogenous variables. If both the outcome and first stage equations are strictly increasing in a scalar unobservable, then many kinds of continuous, discrete, and even binary instruments can be used to point‐identify the levels of the outcome equation. This contrasts sharply with related work by Imbens and Newey, 2009 that requires continuous instruments with large support. One implication is that assumptions about the dimension of heterogeneity can provide nonparametric point‐identification of the distribution of treatment response for a continuous treatment in a randomized controlled experiment with partial compliance.  相似文献   

4.
This paper studies the special case of the triangular system of equations in Vytlacil and Yildiz (2007), where both dependent variables are binary but without imposing the restrictive support condition required by Vytlacil and Yildiz (2007) for identification of the average structural function (ASF) and the average treatment effect (ATE). Under weak regularity conditions, we derive upper and lower bounds on the ASF and the ATE. We show further that the bounds on the ASF and ATE are sharp under some further regularity conditions and an additional restriction on the support of the covariates and the instrument.  相似文献   

5.
In this paper, we consider the nonparametric identification and estimation of the average effect of a dummy endogenous regressor in models where the regressors are weakly but not additively separable from the error term. The model is not required to be strictly increasing in the error term, and the class of models considered includes limited dependent variable models such as discrete choice models. Conditions are established conditions under which it is possible to identify the average effect of the dummy endogenous regressor in a weakly separable model without relying on parametric functional form or distributional assumptions and without the use of large support conditions.  相似文献   

6.
In certain auction, search, and related models, the boundary of the support of the observed data depends on some of the parameters of interest. For such nonregular models, standard asymptotic distribution theory does not apply. Previous work has focused on characterizing the nonstandard limiting distributions of particular estimators in these models. In contrast, we study the problem of constructing efficient point estimators. We show that the maximum likelihood estimator is generally inefficient, but that the Bayes estimator is efficient according to the local asymptotic minmax criterion for conventional loss functions. We provide intuition for this result using Le Cam's limits of experiments framework.  相似文献   

7.
This paper develops a method for inference in dynamic discrete choice models with serially correlated unobserved state variables. Estimation of these models involves computing high‐dimensional integrals that are present in the solution to the dynamic program and in the likelihood function. First, the paper proposes a Bayesian Markov chain Monte Carlo estimation procedure that can handle the problem of multidimensional integration in the likelihood function. Second, the paper presents an efficient algorithm for solving the dynamic program suitable for use in conjunction with the proposed estimation procedure.  相似文献   

8.
This paper presents a test of the exogeneity of a single explanatory variable in a multivariate model. It does not require the exogeneity of the other regressors or the existence of instrumental variables. The fundamental maintained assumption is that the model must be continuous in the explanatory variable of interest. This test has power when unobservable confounders are discontinuous with respect to the explanatory variable of interest, and it is particularly suitable for applications in which that variable has bunching points. An application of the test to the problem of estimating the effects of maternal smoking in birth weight shows evidence of remaining endogeneity, even after controlling for the most complete covariate specification in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号