首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Significant progress in production and information technologies and innovations in management of operations during the last couple of decades have made the production of small lots and deployment of Just‐In‐Time (JIT) concepts in flowshops possible. As a result, some researchers and practitioners have been seeking to improve the performance of non‐repetitive systems using JIT concepts. In this process, the JIT concepts that were originally designed for mass production have been modified to adapt JIT to non‐repetitive systems. This article uses a priority rule that is based on real‐time demand and production information for sequencing jobs in a kanban‐controlled flowshop. The analysis of the effect of this priority rule; the number of kanbans; the length of the withdrawal cycle; First‐Come, First‐Served (FCFS); and Shortest Processing Time (SPT) on four performance measures—customer wait time, total inventory, input stock‐point inventory, and output stock‐point inventory, shows that the use of this priority rule results in a significant reduction of customer wait time and a slight decrease in inventory.  相似文献   

2.
Recent advances in approaches and production technologies for the production of goods and services have made just‐in‐time (JIT) a strong alternative for use in intermittent and small batch production systems, especially when time‐based competition is the norm and a low inventory is a must. However, the conventional JIT system is designed for mass production with a stable master production schedule. This paper suggests supplementing the information provided by production kanbans with information about customer waiting lines to be used by operators to schedule production in each work‐station of intermittent and small batch production systems. This paper uses simulation to analyze the effect of four scheduling policy variables—number of kanbans, length of the withdrawal cycle, information about customer waiting lines, and priority rules on two performance measures—customer wait‐time and inventory. The results show that using information about customer waiting lines reduces customer wait‐time by about 30% while also reducing inventory by about 2%. In addition, the effect of information about customer waiting lines overshadows the effect of priority rules on customer wait‐time and inventory.  相似文献   

3.
We extend the Clark–Scarf serial multi‐echelon inventory model to include procuring production inputs under short‐term take‐or‐pay contracts at one or more stages. In each period, each such stage has the option to order/process at two different cost rates; the cheaper rate applies to units up to the contract quantity selected in the previous period. We prove that in each period and at each such stage, there are three base‐stock levels that characterize an optimal policy, two for the inventory policy and one for the contract quantity selection policy. The optimal cost function is additively separable in its state variables, leading to conquering the curse of dimensionality and the opportunity to manage the supply chain using independently acting managers. We develop conditions under which myopic policies are optimal and illustrate the results using numerical examples. We establish and use a generic one‐period result, which generalizes an important such result in the literature. Extensions to cover variants of take‐or‐pay contracts are included. Limitations are discussed.  相似文献   

4.
A pre‐pack is a collection of items used in retail distribution. By grouping multiple units of one or more stock keeping units (SKU), distribution and handling costs can be reduced; however, ordering flexibility at the retail outlet is limited. This paper studies an inventory system at a retail level where both pre‐packs and individual items (at additional handling cost) can be ordered. For a single‐SKU, single‐period problem, we show that the optimal policy is to order into a “band” with as few individual units as possible. For the multi‐period problem with modular demand, the band policy is still optimal, and the steady‐state distribution of the target inventory position possesses a semi‐uniform structure, which greatly facilitates the computation of optimal policies and approximations under general demand. For the multi‐SKU case, the optimal policy has a generalized band structure. Our numerical results show that pre‐pack use is beneficial when facing stable and complementary demands, and substantial handling savings at the distribution center. The cost premium of using simple policies, such as strict base‐stock and batch‐ordering (pre‐packs only), can be substantial for medium parameter ranges.  相似文献   

5.
Small‐to‐medium‐sized enterprises (SMEs), including many startup firms, need to manage interrelated flows of cash and inventories of goods. In this study, we model a firm that can finance its inventory (ordered or manufactured) with loans in order to meet random demand which in general may not be time stationary. The firm earns interest on its cash on hand and pays interest on its debt. The objective is to maximize the expected value of the firm's capital at the end of a finite planning horizon. The firm's state at the beginning of each period is characterized by the inventory level and the capital level measured in units of the product, whose sum represents the “net worth” of the firm. Our study shows that the optimal ordering policy is characterized by a pair of threshold parameters as follows. (i) If the net worth is less than the lower threshold, then the firm employs a base stock order up to the lower threshold. (ii) If the net worth is between the two thresholds, then the firm orders exactly as many units as it can afford, without borrowing. (iii) If the net worth is above the upper threshold, then the firm employs a base stock order up to the upper threshold. Further, upper and lower bounds for the threshold values are developed using two simple‐to‐compute myopic ordering policies which yield lower bounds for the value function. We also derive an upper bound for the value function by considering a sell‐back policy. Subsequently, it is shown that policies of similar structure are optimal when the loan and deposit interest rates are piecewise linear functions, when there is a maximal loan limit and when unsatisfied demand is backordered. Finally, further managerial insights are provided with extensive numerical studies.  相似文献   

6.
Lack of coordination between machinery fault diagnosis and inventory management for spare parts can lead to increased inventory costs and disruptions in production activity. We develop a framework for incorporating real‐time condition monitoring information into inventory decisions for spare parts. We consider a manufacturer who periodically replenishes inventory for a machine part that is subject to deterioration. The deterioration is captured via condition monitoring and modeled using a Wiener process. The resulting degradation model is used to derive the life distribution of a functioning part and to estimate the demand distribution for spare parts. This estimation is periodically updated, in a Bayesian manner, as additional information on part deterioration is obtained. We develop an inventory model that incorporates this updated demand distribution and demonstrate that a dynamic base‐stock policy, in which the optimal base‐stock level is a function of some subset of the observed condition monitoring information, is optimal. We propose a myopic critical fractile policy that captures the essence of the optimal policy, but is easier to compute. Computational experiments indicate that this heuristic performs quite well relative to the optimal policy. Adaptive inventory policies such as these can help manufacturers to increase machine availability and reduce inventory costs.  相似文献   

7.
Managers seeking to improve lead‐time performance are challenged by how to balance resources and investments between process improvement achieved through lean/just‐in‐time (JIT) practices and information technology (IT) deployment. However, extant literature provides little guidance on this question. Motivated by both practical importance and lack of academic research, this article examines empirically the relationships among interfirm IT integration, intrafirm IT integration, lean/JIT practices, and lead‐time performance using data from IndustryWeek's Census of Manufacturers ( IndustryWeek, 2006 ). The results provide several new insights on the relationship between IT integration and lean/JIT practices. First, the study confirms that implementing lean/JIT practices significantly reduces lead time. Second, lean/JIT practices mediate the influence of IT integration on lead‐time performance. This suggests that process improvements that result from lean/JIT practices are important contributors to the success of IT integration. Even companies that have experienced success in reducing lead time through lean/JIT practices may benefit from IT integration practices such as those embodied in enterprise resource planning systems. The findings provide managers with empirical evidence and a theoretical framework on the balance between lean/JIT and IT for effecting improvement in lead‐time performance, thus offering practical guidance on this important question. Future research is needed to extend the lean/JIT practices in this study to supply chain practices and explore the relationship between supply chain practices and IT integration.  相似文献   

8.
We examine the critical role of evolving private information in managing supply risk. The problem features a dyadic channel where a dominant buyer operates a multiperiod inventory system with lost sales and fixed cost. He replenishes from a supplier, whose private state of production is vulnerable to random shocks and evolves dynamically over time. We characterize the optimal inventory policy with a simple semi‐stationary structure; it distorts order quantity for limiting information rent only in the initial period; the optimal payment compensates for production cost in every period but concedes real information rent only in the initial period. These properties allow us to derive an easy‐to‐implement revenue‐sharing contract that facilitates ex ante strategic planning and ex post dynamic execution. This work advances our understanding on when and how to use private information in dynamic risk management.  相似文献   

9.
This article introduces approaches for identifying key interdependent infrastructure sectors based on the inventory dynamic inoperability input‐output model, which integrates an inventory model and a risk‐based interdependency model. An identification of such key sectors narrows a policymaker's focus on sectors providing most impact and receiving most impact from inventory‐caused delays in inoperability resulting from disruptive events. A case study illustrates the practical insights of the key sector approaches derived from a value of workforce‐centered production inoperability from Bureau of Economic Analysis data.  相似文献   

10.
We study zero‐inventory production‐distribution systems under pool‐point delivery. The zero‐inventory production and distribution paradigm is supported in a variety of industries in which a product cannot be inventoried because of its short shelf life. The advantages of pool‐point (or hub‐and‐spoke) distribution, explored extensively in the literature, include the efficient use of transportation resources and effective day‐to‐day management of operations. The setting of our analysis is as follows: A production facility (plant) with a finite production rate distributes its single product, which cannot be inventoried, to several pool points. Each pool point may require multiple truckloads to satisfy its customers' demand. A third‐party logistics provider then transports the product to individual customers surrounding each pool point. The production rate can be increased up to a certain limit by incurring additional cost. The delivery of the product is done by identical trucks, each having limited capacity and non‐negligible traveling time between the plant and the pool points. Our objective is to coordinate the production and transportation operations so that the total cost of production and distribution is minimized, while respecting the product lifetime and the delivery capacity constraints. This study attempts to develop intuition into zero‐inventory production‐distribution systems under pool‐point delivery by considering several variants of the above setting. These include multiple trucks, a modifiable production rate, and alternative objectives. Using a combination of theoretical analysis and computational experiments, we gain insights into optimizing the total cost of a production‐delivery plan by understanding the trade‐off between production and transportation.  相似文献   

11.
In this article, we study the performance of multi‐echelon inventory systems with intermediate, external product demand in one or more upper echelons. This type of problem is of general interest in inventory theory and of particular importance in supply chain systems with both end‐product demand and spare parts (subassemblies) demand. The multi‐echelon inventory system considered here is a combination of assembly and serial stages with direct demand from more than one node. The aspect of multiple sources of demands leads to interesting inventory allocation problems. The demand and capacity at each node are considered stochastic in nature. A fixed supply and manufacturing lead time is used between the stages. We develop mathematical models for these multi‐echelon systems, which describe the inventory dynamics and allow simulation of the system. A simulation‐based inventory optimization approach is developed to search for the best base‐stock levels for these systems. The gradient estimation technique of perturbation analysis is used to derive sample‐path estimators. We consider four allocation schemes: lexicographic with priority to intermediate demand, lexiographic with priority to downstream demand, predetermined proportional allocation, and proportional allocation. Based on the numerical results we find that no single allocation policy is appropriate under all conditions. Depending on the combinations of variability and utilization we identify conditions under which use of certain allocation polices across the supply chain result in lower costs. Further, we determine how selection of an inappropriate allocation policy in the presence of scarce on‐hand inventory could result in downstream nodes facing acute shortages. Consequently we provide insight on why good allocation policies work well under differing sets of operating conditions.  相似文献   

12.
We study inventory optimization for locally controlled, continuous‐review distribution systems with stochastic customer demands. Each node follows a base‐stock policy and a first‐come, first‐served allocation policy. We develop two heuristics, the recursive optimization (RO) heuristic and the decomposition‐aggregation (DA) heuristic, to approximate the optimal base‐stock levels of all the locations in the system. The RO heuristic applies a bottom‐up approach that sequentially solves single‐variable, convex problems for each location. The DA heuristic decomposes the distribution system into multiple serial systems, solves for the base‐stock levels of these systems using the newsvendor heuristic of Shang and Song (2003), and then aggregates the serial systems back into the distribution system using a procedure we call “backorder matching.” A key advantage of the DA heuristic is that it does not require any evaluation of the cost function (a computationally costly operation that requires numerical convolution). We show that, for both RO and DA, changing some of the parameters, such as leadtime, unit backordering cost, and demand rate, of a location has an impact only on its own local base‐stock level and its upstream locations’ local base‐stock levels. An extensive numerical study shows that both heuristics perform well, with the RO heuristic providing more accurate results and the DA heuristic consuming less computation time. We show that both RO and DA are asymptotically optimal along multiple dimensions for two‐echelon distribution systems. Finally, we show that, with minor changes, both RO and DA are applicable to the balanced allocation policy.  相似文献   

13.
Most material requirements planning (MRP) systems apply standard costing (absorption costing) approaches to define setup costs that are used as fixed (time invariant) setup parameters in single-level lot-sizing methods. This paper presents a computationally simple approach for estimating more appropriate setup parameters based on estimates of work-center shadow prices. These setup parameters then are used in traditional single-level MRP lot-sizing procedures. The shadow price of capacity at each work center is calculated as the increase in the overall inventory carrying cost for each additional hour of capacity lost to setups. The opportunity cost of a setup for an order subsequently is determined based on the routing information for each order and is used by traditional MRP lot-sizing procedures to calculate lot sizes. A simulation experiment compares the performance period order quantity lot sizing with capacity-sensitive setup parameters with the fixed accounting-based setup parameters. The simulation replicates the planning and control functions of a typical MRP system. The results of the experiment show that capacity-sensitive setup parameters can make significant reductions in both carrying cost and lateness and can achieve many of the benefits of optimized production technology in the context of an MRP system.  相似文献   

14.
Several contradictions are noted among the Economic Order Quantity (EOQ), Just‐In‐Time (JIT), and Optimized Production Technology (OPT) approaches and the economic framework for profit maximization. A fundamental model referred to as the Economic Manufacturing Quantity (EMO) is developed and examined for its integrating implications for the three approaches. An implication for the classic EOQ approach is that the balance between setup and inventory carrying costs is valid when a production facility is operating at or below a certain critical level but not when operating above that level. An implication for the JIT approach is that one must reduce setup cost at non‐bottlenecks and setup time at bottlenecks to reduce inventory. An implication for the OPT approach is that trade‐offs between setup and inventory carrying costs may indeed be ignored while determining process batch sizes, provided each facility in a production system is operating at or above Its critical level. Economic theoretic analysis of the EMO model provides a basis for unification of JIT which advocates stability in operating level as a key to improved productivity and quality, and OPT that advocates maximizing operating level with resultant emphasis on bottlenecks as a key to increased profits. This unifying basis states that a profit‐maximizing production facility or system will operate at the full and stable level as long as market demand remains relatively sensitive to price and operating at the full (maximum) level provides positive unit contribution.  相似文献   

15.
We consider an assemble‐to‐order (ATO) system with multiple products, multiple components which may be demanded in different quantities by different products, possible batch ordering of components, random lead times, and lost sales. We model the system as an infinite‐horizon Markov decision process under the average cost criterion. A control policy specifies when a batch of components should be produced, and whether an arriving demand for each product should be satisfied. Previous work has shown that a lattice‐dependent base‐stock and lattice‐dependent rationing (LBLR) policy is an optimal stationary policy for a special case of the ATO model presented here (the generalized M‐system). In this study, we conduct numerical experiments to evaluate the use of an LBLR policy for our general ATO model as a heuristic, comparing it to two other heuristics from the literature: a state‐dependent base‐stock and state‐dependent rationing (SBSR) policy, and a fixed base‐stock and fixed rationing (FBFR) policy. Remarkably, LBLR yields the globally optimal cost in each of more than 22,500 instances of the general problem, outperforming SBSR and FBFR with respect to both objective value (by up to 2.6% and 4.8%, respectively) and computation time (by up to three orders and one order of magnitude, respectively) in 350 of these instances (those on which we compare the heuristics). LBLR and SBSR perform significantly better than FBFR when replenishment batch sizes imperfectly match the component requirements of the most valuable or most highly demanded product. In addition, LBLR substantially outperforms SBSR if it is crucial to hold a significant amount of inventory that must be rationed.  相似文献   

16.
We examine the critical role of advance supply signals—such as suppliers’ financial health and production viability—in dynamic supply risk management. The firm operates an inventory system with multiple demand classes and multiple suppliers. The sales are discretionary and the suppliers are susceptible to both systematic and operational risks. We develop a hierarchical Markov model that captures the essential features of advance supply signals, and integrate it with procurement and selling decisions. We characterize the optimal procurement and selling policy, and the strategic relationship between signal‐based forecast, multi‐sourcing, and discretionary selling. We show that higher demand heterogeneity may reduce the value of discretionary selling, and that the mean value‐based forecast may outperform the stationary distribution‐based forecast. This work advances our understanding on when and how to use advance supply signals in dynamic risk management. Future supply risk erodes profitability but enhances the marginal value of current inventory. A signal of future supply shortage raises both base stock and demand rationing levels, thereby boosting the current production and tightening the current sales. Signal‐based dynamic forecast effectively guides the firm's procurement and selling decisions. Its value critically depends on supply volatility and scarcity. Ignoring advance supply signals can result in misleading recommendations and severe losses. Signal‐based dynamic supply forecast should be used when: (a) supply uncertainty is substantial, (b) supply‐demand ratio is moderate, (c) forecast precision is high, and (d) supplier heterogeneity is high.  相似文献   

17.
Inspired by recent empirical work on inventory record inaccuracy, we consider a periodic review inventory system with imperfect inventory records and unobserved lost sales. Record inaccuracies are assumed to arrive via an error process that perturbs physical inventory but is unobserved by the inventory manager. The inventory manager maintains a probability distribution around the physical inventory level that he updates based on sales observations using Bayes Theorem. The focus of this study is on understanding, approximating, and evaluating optimal forward‐looking replenishment in this environment. By analyzing one‐ and two‐period versions of the problem, we demonstrate several mechanisms by which the error process and associated record inaccuracy can impact optimal replenishment. Record inaccuracy generally brings an incentive for a myopic manager to increase stock to buffer the added uncertainty. On the other hand, a forward‐looking manager will stock less than a myopic manager, in part to improve information content for future decisions. Using an approximate partially observed dynamic programming policy and associated bound, we numerically corroborate our analytical findings and measure the effectiveness of an intelligent myopic heuristic. We find that the myopic heuristic is likely sufficiently good in practical settings targeting high service levels.  相似文献   

18.
Inventory displayed on the retail sales floor not only performs the classical supply function but also plays a role in affecting consumers’ buying behavior and hence the total demand. Empirical evidence from the retail industry shows that for some types of products, higher levels of on‐shelf inventory have a demand‐increasing effect (“billboard effect”) while for some other types of products, higher levels of on‐shelf inventory have a demand‐decreasing effect (“scarcity effect”). This suggests that retailers may use the amount of shelf stock on display as a tool to influence demand and operate a store backroom to hold the inventory of items not displayed on the shelves, introducing the need for efficient management of the backroom and on‐shelf inventories. The purpose of this study is to address such an issue by considering a periodic‐review inventory system in which demand in each period is stochastic and depends on the amount of inventory displayed on the shelf. We first analyze the problem in a finite‐horizon setting and show under a general demand model that the system inventory is optimally replenished by a base‐stock policy and the shelf stock is controlled by two critical points representing the target levels to raise up/drop down the on‐shelf inventory level. In the infinite‐horizon setting, we find that the optimal policies simplify to stationary base‐stock type policies. Under the billboard effect, we further show that the optimal policy is monotone in the system states. Numerical experiments illustrate the value of smart backroom management strategy and show that significant profit gains can be obtained by jointly managing the backroom and on‐shelf inventories.  相似文献   

19.
For nearly all call centers, agent schedules are typically created several days or weeks before the time that agents report to work. After schedules are created, call center resource managers receive additional information that can affect forecasted workload and resource availability. In particular, there is significant evidence, both among practitioners and in the research literature, suggesting that actual call arrival volumes early in a scheduling period (typically an individual day or week) can provide valuable information about the call arrival pattern later in the same scheduling period. In this paper, we develop a flexible and powerful heuristic framework for managers to make intra‐day resource adjustment decisions that take into account updated call forecasts, updated agent requirements, existing agent schedules, agents' schedule flexibility, and associated incremental labor costs. We demonstrate the value of this methodology in managing the trade‐off between labor costs and service levels to best meet variable rates of demand for service, using data from an actual call center.  相似文献   

20.
We study an average‐cost stochastic inventory control problem in which the firm can replenish inventory and adjust the price at anytime. We establish the optimality to change the price from low to high in each replenishment cycle as inventory is depleted. With costly price adjustment, scale economies of inventory replenishment are reflected in the cycle time instead of lot size—An increased fixed ordering cost leads to an extended replenishment cycle but does not necessarily increase the order quantity. A reduced marginal cost of ordering calls for an increased order quantity, as well as speeding up product selling within a cycle. We derive useful properties of the profit function that allows for reducing computational complexity of the problem. For systems requiring short replenishment cycles, the optimal solution can be easily computed by applying these properties. For systems requiring long replenishment cycles, we further consider a relaxed problem that is computational tractable. Under this relaxation, the sum of fixed ordering cost and price adjustment cost is equal to (greater than, less than) the total inventory holding cost within a replenishment cycle when the inventory holding cost is linear (convex, concave) in the stock level. Moreover, under the optimal solution, the time‐average profit is the same across all price segments when the inventory holding cost is accounted properly. Through a numerical study, we demonstrate that inventory‐based dynamic pricing can lead to significant profit improvement compared with static pricing and limited price adjustment can yield a benefit that is close to unlimited price adjustment. To be able to enjoy the benefit of dynamic pricing, however, it is important to appropriately choose inventory levels at which the price is revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号