首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a √n‐consistent and asymptotically normal estimator of the parameters (regression coefficients and threshold points) of a semiparametric ordered response model under the assumption of independence of errors and regressors. The independence assumption implies shift restrictions allowing identification of threshold points up to location and scale. The estimator is useful in various applications, particularly in new product demand forecasting from survey data subject to systematic misreporting. We apply the estimator to assess exaggeration bias in survey data on demand for a new telecommunications service.  相似文献   

2.
We propose inference procedures for partially identified population features for which the population identification region can be written as a transformation of the Aumann expectation of a properly defined set valued random variable (SVRV). An SVRV is a mapping that associates a set (rather than a real number) with each element of the sample space. Examples of population features in this class include interval‐identified scalar parameters, best linear predictors with interval outcome data, and parameters of semiparametric binary models with interval regressor data. We extend the analogy principle to SVRVs and show that the sample analog estimator of the population identification region is given by a transformation of a Minkowski average of SVRVs. Using the results of the mathematics literature on SVRVs, we show that this estimator converges in probability to the population identification region with respect to the Hausdorff distance. We then show that the Hausdorff distance and the directed Hausdorff distance between the population identification region and the estimator, when properly normalized by , converge in distribution to functions of a Gaussian process whose covariance kernel depends on parameters of the population identification region. We provide consistent bootstrap procedures to approximate these limiting distributions. Using similar arguments as those applied for vector valued random variables, we develop a methodology to test assumptions about the true identification region and its subsets. We show that these results can be used to construct a confidence collection and a directed confidence collection. Those are (respectively) collection of sets that, when specified as a null hypothesis for the true value (a subset of values) of the population identification region, cannot be rejected by our tests.  相似文献   

3.
This paper considers large N and large T panel data models with unobservable multiple interactive effects, which are correlated with the regressors. In earnings studies, for example, workers' motivation, persistence, and diligence combined to influence the earnings in addition to the usual argument of innate ability. In macroeconomics, interactive effects represent unobservable common shocks and their heterogeneous impacts on cross sections. We consider identification, consistency, and the limiting distribution of the interactive‐effects estimator. Under both large N and large T, the estimator is shown to be consistent, which is valid in the presence of correlations and heteroskedasticities of unknown form in both dimensions. We also derive the constrained estimator and its limiting distribution, imposing additivity coupled with interactive effects. The problem of testing additive versus interactive effects is also studied. In addition, we consider identification and estimation of models in the presence of a grand mean, time‐invariant regressors, and common regressors. Given identification, the rate of convergence and limiting results continue to hold.  相似文献   

4.
This paper extends the conditional logit approach (Rasch, Andersen, Chamberlain) used in panel data models of binary variables with correlated fixed effects and strictly exogenous regressors. In a two‐period two‐state model, necessary and sufficient conditions on the joint distribution function of the individual‐and‐period specific shocks are given such that the sum of individual binary variables across time is a sufficient statistic for the individual effect. By extending a result of Chamberlain, it is shown that root‐n consistent regular estimators can be constructed in panel binary models if and only if the property of sufficiency holds. In applied work, the estimation method amounts to quasi‐differencing the binary variables as if they were continuous variables and transforming a panel data model into a cross‐section model. Semiparametric approaches can then be readily applied.  相似文献   

5.
This paper studies the problem of identification and estimation in nonparametric regression models with a misclassified binary regressor where the measurement error may be correlated with the regressors. We show that the regression function is nonparametrically identified in the presence of an additional random variable that is correlated with the unobserved true underlying variable but unrelated to the measurement error. Identification for semiparametric and parametric regression functions follows straightforwardly from the basic identification result. We propose a kernel estimator based on the identification strategy, derive its large sample properties, and discuss alternative estimation procedures. We also propose a test for misclassification in the model based on an exclusion restriction that is straightforward to implement.  相似文献   

6.
This paper analyzes the linear regression model y = xβ+ε with a conditional median assumption med (ε| z) = 0, where z is a vector of exogenous instrument random variables. We study inference on the parameter β when y is censored and x is endogenous. We treat the censored model as a model with interval observation on an outcome, thus obtaining an incomplete model with inequality restrictions on conditional median regressions. We analyze the identified features of the model and provide sufficient conditions for point identification of the parameter β. We use a minimum distance estimator to consistently estimate the identified features of the model. We show that under point identification conditions and additional regularity conditions, the estimator based on inequality restrictions is normal and we derive its asymptotic variance. One can use our setup to treat the identification and estimation of endogenous linear median regression models with no censoring. A Monte Carlo analysis illustrates our estimator in the censored and the uncensored case.  相似文献   

7.
A unifying framework to test for causal effects in nonlinear models is proposed. We consider a generalized linear‐index regression model with endogenous regressors and no parametric assumptions on the error disturbances. To test the significance of the effect of an endogenous regressor, we propose a statistic that is a kernel‐weighted version of the rank correlation statistic (tau) of Kendall (1938). The semiparametric model encompasses previous cases considered in the literature (continuous endogenous regressors (Blundell and Powell (2003)) and a single binary endogenous regressor (Vytlacil and Yildiz (2007))), but the testing approach is the first to allow for (i) multiple discrete endogenous regressors, (ii) endogenous regressors that are neither discrete nor continuous (e.g., a censored variable), and (iii) an arbitrary “mix” of endogenous regressors (e.g., one binary regressor and one continuous regressor).  相似文献   

8.
This paper presents a solution to an important econometric problem, namely the root n consistent estimation of nonlinear models with measurement errors in the explanatory variables, when one repeated observation of each mismeasured regressor is available. While a root n consistent estimator has been derived for polynomial specifications (see Hausman, Ichimura, Newey, and Powell (1991)), such an estimator for general nonlinear specifications has so far not been available. Using the additional information provided by the repeated observation, the suggested estimator separates the measurement error from the “true” value of the regressors thanks to a useful property of the Fourier transform: The Fourier transform converts the integral equations that relate the distribution of the unobserved “true” variables to the observed variables measured with error into algebraic equations. The solution to these equations yields enough information to identify arbitrary moments of the “true,” unobserved variables. The value of these moments can then be used to construct any estimator that can be written in terms of moments, including traditional linear and nonlinear least squares estimators, or general extremum estimators. The proposed estimator is shown to admit a representation in terms of an influence function, thus establishing its root n consistency and asymptotic normality. Monte Carlo evidence and an application to Engel curve estimation illustrate the usefulness of this new approach.  相似文献   

9.
In this paper, we propose a simple bias–reduced log–periodogram regression estimator, ^dr, of the long–memory parameter, d, that eliminates the first– and higher–order biases of the Geweke and Porter–Hudak (1983) (GPH) estimator. The bias–reduced estimator is the same as the GPH estimator except that one includes frequencies to the power 2k for k=1,…,r, for some positive integer r, as additional regressors in the pseudo–regression model that yields the GPH estimator. The reduction in bias is obtained using assumptions on the spectrum only in a neighborhood of the zero frequency. Following the work of Robinson (1995b) and Hurvich, Deo, and Brodsky (1998), we establish the asymptotic bias, variance, and mean–squared error (MSE) of ^dr, determine the asymptotic MSE optimal choice of the number of frequencies, m, to include in the regression, and establish the asymptotic normality of ^dr. These results show that the bias of ^dr goes to zero at a faster rate than that of the GPH estimator when the normalized spectrum at zero is sufficiently smooth, but that its variance only is increased by a multiplicative constant. We show that the bias–reduced estimator ^dr attains the optimal rate of convergence for a class of spectral densities that includes those that are smooth of order s≥1 at zero when r≥(s−2)/2 and m is chosen appropriately. For s>2, the GPH estimator does not attain this rate. The proof uses results of Giraitis, Robinson, and Samarov (1997). We specify a data–dependent plug–in method for selecting the number of frequencies m to minimize asymptotic MSE for a given value of r. Some Monte Carlo simulation results for stationary Gaussian ARFIMA (1, d, 1) and (2, d, 0) models show that the bias–reduced estimators perform well relative to the standard log–periodogram regression estimator.  相似文献   

10.
We provide a tractable characterization of the sharp identification region of the parameter vector θ in a broad class of incomplete econometric models. Models in this class have set‐valued predictions that yield a convex set of conditional or unconditional moments for the observable model variables. In short, we call these models with convex moment predictions. Examples include static, simultaneous‐move finite games of complete and incomplete information in the presence of multiple equilibria; best linear predictors with interval outcome and covariate data; and random utility models of multinomial choice in the presence of interval regressors data. Given a candidate value for θ, we establish that the convex set of moments yielded by the model predictions can be represented as the Aumann expectation of a properly defined random set. The sharp identification region of θ, denoted ΘI, can then be obtained as the set of minimizers of the distance from a properly specified vector of moments of random variables to this Aumann expectation. Algorithms in convex programming can be exploited to efficiently verify whether a candidate θ is in ΘI. We use examples analyzed in the literature to illustrate the gains in identification and computational tractability afforded by our method.  相似文献   

11.
In weighted moment condition models, we show a subtle link between identification and estimability that limits the practical usefulness of estimators based on these models. In particular, if it is necessary for (point) identification that the weights take arbitrarily large values, then the parameter of interest, though point identified, cannot be estimated at the regular (parametric) rate and is said to be irregularly identified. This rate depends on relative tail conditions and can be as slow in some examples as n−1/4. This nonstandard rate of convergence can lead to numerical instability and/or large standard errors. We examine two weighted model examples: (i) the binary response model under mean restriction introduced by Lewbel (1997) and further generalized to cover endogeneity and selection, where the estimator in this class of models is weighted by the density of a special regressor, and (ii) the treatment effect model under exogenous selection (Rosenbaum and Rubin (1983)), where the resulting estimator of the average treatment effect is one that is weighted by a variant of the propensity score. Without strong relative support conditions, these models, similar to well known “identified at infinity” models, lead to estimators that converge at slower than parametric rate, since essentially, to ensure point identification, one requires some variables to take values on sets with arbitrarily small probabilities, or thin sets. For the two models above, we derive some rates of convergence and propose that one conducts inference using rate adaptive procedures that are analogous to Andrews and Schafgans (1998) for the sample selection model.  相似文献   

12.
In this paper we propose a new estimator for a model with one endogenous regressor and many instrumental variables. Our motivation comes from the recent literature on the poor properties of standard instrumental variables estimators when the instrumental variables are weakly correlated with the endogenous regressor. Our proposed estimator puts a random coefficients structure on the relation between the endogenous regressor and the instruments. The variance of the random coefficients is modelled as an unknown parameter. In addition to proposing a new estimator, our analysis yields new insights into the properties of the standard two‐stage least squares (TSLS) and limited‐information maximum likelihood (LIML) estimators in the case with many weak instruments. We show that in some interesting cases, TSLS and LIML can be approximated by maximizing the random effects likelihood subject to particular constraints. We show that statistics based on comparisons of the unconstrained estimates of these parameters to the implicit TSLS and LIML restrictions can be used to identify settings when standard large sample approximations to the distributions of TSLS and LIML are likely to perform poorly. We also show that with many weak instruments, LIML confidence intervals are likely to have under‐coverage, even though its finite sample distribution is approximately centered at the true value of the parameter. In an application with real data and simulations around this data set, the proposed estimator performs markedly better than TSLS and LIML, both in terms of coverage rate and in terms of risk.  相似文献   

13.
This paper considers tests for structural instability of short duration, such as at the end of the sample. The key feature of the testing problem is that the number, m, of observations in the period of potential change is relatively small—possibly as small as one. The well‐known F test of Chow (1960) for this problem only applies in a linear regression model with normally distributed iid errors and strictly exogenous regressors, even when the total number of observations, n+m, is large. We generalize the F test to cover regression models with much more general error processes, regressors that are not strictly exogenous, and estimation by instrumental variables as well as least squares. In addition, we extend the F test to nonlinear models estimated by generalized method of moments and maximum likelihood. Asymptotic critical values that are valid as n→∞ with m fixed are provided using a subsampling‐like method. The results apply quite generally to processes that are strictly stationary and ergodic under the null hypothesis of no structural instability.  相似文献   

14.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time‐homogeneity conditions that are like “time is randomly assigned” or “time is an instrument.” Partial‐identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed‐effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial‐identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of T, the number of time periods, is shown by deriving shrinkage rates for the identified set as T grows. We also consider semiparametric, discrete‐choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.  相似文献   

15.
This paper develops an asymptotic theory for time series binary choice models with nonstationary explanatory variables generated as integrated processes. Both logit and probit models are covered. The maximum likelihood (ML) estimator is consistent but a new phenomenon arises in its limit distribution theory. The estimator consists of a mixture of two components, one of which is parallel to and the other orthogonal to the direction of the true parameter vector, with the latter being the principal component. The ML estimator is shown to converge at a rate of n3/4 along its principal component but has the slower rate of n1/4 convergence in all other directions. This is the first instance known to the authors of multiple convergence rates in models where the regressors have the same (full rank) stochastic order and where the parameters appear in linear forms of these regressors. It is a consequence of the fact that the estimating equations involve nonlinear integrable transformations of linear forms of integrated processes as well as polynomials in these processes, and the asymptotic behavior of these elements is quite different. The limit distribution of the ML estimator is derived and is shown to be a mixture of two mixed normal distributions with mixing variates that are dependent upon Brownian local time as well as Brownian motion. It is further shown that the sample proportion of binary choices follows an arc sine law and therefore spends most of its time in the neighborhood of zero or unity. The result has implications for policy decision making that involves binary choices and where the decisions depend on economic fundamentals that involve stochastic trends. Our limit theory shows that, in such conditions, policy is likely to manifest streams of little intervention or intensive intervention.  相似文献   

16.
We present a simple way to estimate the effects of changes in a vector of observable variables X on a limited dependent variable Y when Y is a general nonseparable function of X and unobservables, and X is independent of the unobservables. We treat models in which Y is censored from above, below, or both. The basic idea is to first estimate the derivative of the conditional mean of Y given X at x with respect to x on the uncensored sample without correcting for the effect of x on the censored population. We then correct the derivative for the effects of the selection bias. We discuss nonparametric and semiparametric estimators for the derivative. We also discuss the cases of discrete regressors and of endogenous regressors in both cross section and panel data contexts.  相似文献   

17.
We study the asymptotic distribution of three‐step estimators of a finite‐dimensional parameter vector where the second step consists of one or more nonparametric regressions on a regressor that is estimated in the first step. The first‐step estimator is either parametric or nonparametric. Using Newey's (1994) path‐derivative method, we derive the contribution of the first‐step estimator to the influence function. In this derivation, it is important to account for the dual role that the first‐step estimator plays in the second‐step nonparametric regression, that is, that of conditioning variable and that of argument.  相似文献   

18.
This paper considers regression models for cross‐section data that exhibit cross‐section dependence due to common shocks, such as macroeconomic shocks. The paper analyzes the properties of least squares (LS) estimators in this context. The results of the paper allow for any form of cross‐section dependence and heterogeneity across population units. The probability limits of the LS estimators are determined, and necessary and sufficient conditions are given for consistency. The asymptotic distributions of the estimators are found to be mixed normal after recentering and scaling. The t, Wald, and F statistics are found to have asymptotic standard normal, χ2, and scaled χ2 distributions, respectively, under the null hypothesis when the conditions required for consistency of the parameter under test hold. However, the absolute values of t, Wald, and F statistics are found to diverge to infinity under the null hypothesis when these conditions fail. Confidence intervals exhibit similarly dichotomous behavior. Hence, common shocks are found to be innocuous in some circumstances, but quite problematic in others. Models with factor structures for errors and regressors are considered. Using the general results, conditions are determined under which consistency of the LS estimators holds and fails in models with factor structures. The results are extended to cover heterogeneous and functional factor structures in which common factors have different impacts on different population units.  相似文献   

19.
We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n‐1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.  相似文献   

20.
In this paper, we study the least squares (LS) estimator in a linear panel regression model with unknown number of factors appearing as interactive fixed effects. Assuming that the number of factors used in estimation is larger than the true number of factors in the data, we establish the limiting distribution of the LS estimator for the regression coefficients as the number of time periods and the number of cross‐sectional units jointly go to infinity. The main result of the paper is that under certain assumptions, the limiting distribution of the LS estimator is independent of the number of factors used in the estimation as long as this number is not underestimated. The important practical implication of this result is that for inference on the regression coefficients, one does not necessarily need to estimate the number of interactive fixed effects consistently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号