共查询到15条相似文献,搜索用时 0 毫秒
1.
Owing to increased costs and competition pressure, drug development becomes more and more challenging. Therefore, there is a strong need for improving efficiency of clinical research by developing and applying methods for quantitative decision making. In this context, the integrated planning for phase II/III programs plays an important role as numerous quantities can be varied that are crucial for cost, benefit, and program success. Recently, a utility‐based framework has been proposed for an optimal planning of phase II/III programs that puts the choice of decision boundaries and phase II sample sizes on a quantitative basis. However, this method is restricted to studies with a single time‐to‐event endpoint. We generalize this procedure to the setting of clinical trials with multiple endpoints and (asymptotically) normally distributed test statistics. Optimal phase II sample sizes and go/no‐go decision rules are provided for both the “all‐or‐none” and “at‐least‐one” win criteria. Application of the proposed method is illustrated by drug development programs in the fields of Alzheimer disease and oncology. 相似文献
2.
Immunotherapy—treatments that enlist the immune system to battle tumors—has received widespread attention in cancer research. Due to its unique features and mechanisms for treating cancer, immunotherapy requires novel clinical trial designs. We propose a Bayesian seamless phase I/II randomized design for immunotherapy trials (SPIRIT) to find the optimal biological dose (OBD) defined in terms of the restricted mean survival time. We jointly model progression‐free survival and the immune response. Progression‐free survival is used as the primary endpoint to determine the OBD, and the immune response is used as an ancillary endpoint to quickly screen out futile doses. Toxicity is monitored throughout the trial. The design consists of two seamlessly connected stages. The first stage identifies a set of safe doses. The second stage adaptively randomizes patients to the safe doses identified and uses their progression‐free survival and immune response to find the OBD. The simulation study shows that the SPIRIT has desirable operating characteristics and outperforms the conventional design. 相似文献
3.
The phase II basket trial in oncology is a novel design that enables the simultaneous assessment of treatment effects of one anti-cancer targeted agent in multiple cancer types. Biomarkers could potentially associate with the clinical outcomes and re-define clinically meaningful treatment effects. It is therefore natural to develop a biomarker-based basket design to allow the prospective enrichment of the trials with the adaptive selection of the biomarker-positive (BM+) subjects who are most sensitive to the experimental treatment. We propose a two-stage phase II adaptive biomarker basket (ABB) design based on a potential predictive biomarker measured on a continuous scale. At Stage 1, the design incorporates a biomarker cutoff estimation procedure via a hierarchical Bayesian model with biomarker as a covariate (HBMbc). At Stage 2, the design enrolls only BM+ subjects, defined as those with the biomarker values exceeding the biomarker cutoff within each cancer type, and subsequently assesses the early efficacy and/or futility stopping through the pre-defined interim analyses. At the end of the trial, the response rate of all BM+ subjects for each cancer type can guide drug development, while the data from all subjects can be used to further model the relationship between the biomarker value and the clinical outcome for potential future research. The extensive simulation studies show that the ABB design could produce a good estimate of the biomarker cutoff to select BM+ subjects with high accuracy and could outperform the existing phase II basket biomarker cutoff design under various scenarios. 相似文献
4.
Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade‐offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving‐reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method. 相似文献
5.
In recent years, seamless phase I/II clinical trials have drawn much attention, as they consider both toxicity and efficacy endpoints in finding an optimal dose (OD). Engaging an appropriate number of patients in a trial is a challenging task. This paper attempts a dynamic stopping rule to save resources in phase I/II trials. That is, the stopping rule aims to save patients from unnecessary toxic or subtherapeutic doses. We allow a trial to stop early when widths of the confidence intervals for the dose-response parameters become narrower or when the sample size is equal to a predefined size, whichever comes first. The simulation study of dose-response scenarios in various settings demonstrates that the proposed stopping rule can engage an appropriate number of patients. Therefore, we suggest its use in clinical trials. 相似文献
6.
Cornelia Ursula Kunz Tim Friede Nick Parsons Susan Todd Nigel Stallard 《Pharmaceutical statistics》2014,13(4):238-246
Seamless phase II/III clinical trials are conducted in two stages with treatment selection at the first stage. In the first stage, patients are randomized to a control or one of k > 1 experimental treatments. At the end of this stage, interim data are analysed, and a decision is made concerning which experimental treatment should continue to the second stage. If the primary endpoint is observable only after some period of follow‐up, at the interim analysis data may be available on some early outcome on a larger number of patients than those for whom the primary endpoint is available. These early endpoint data can thus be used for treatment selection. For two previously proposed approaches, the power has been shown to be greater for one or other method depending on the true treatment effects and correlations. We propose a new approach that builds on the previously proposed approaches and uses data available at the interim analysis to estimate these parameters and then, on the basis of these estimates, chooses the treatment selection method with the highest probability of correctly selecting the most effective treatment. This method is shown to perform well compared with the two previously described methods for a wide range of true parameter values. In most cases, the performance of the new method is either similar to or, in some cases, better than either of the two previously proposed methods. © 2014 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. 相似文献
7.
Adaptive phase I/II clinical trials for drug combination assessment in oncology using the outcomes of each cycle 下载免费PDF全文
Many new anticancer agents can be combined with existing drugs, as combining a number of drugs may be expected to have a better therapeutic effect than monotherapy owing to synergistic effects. Furthermore, to drive drug development and to reduce the associated cost, there has been a growing tendency to combine these as phase I/II trials. With respect to phase I/II oncology trials for the assessment of dose combinations, in the existing methodologies in which efficacy based on tumor response and safety based on toxicity are modeled as binary outcomes, it is not possible to enroll and treat the next cohort of patients unless the best overall response has been determined in the current cohort. Thus, the trial duration might be potentially extended to an unacceptable degree. In this study, we proposed a method that randomizes the next cohort of patients in the phase II part to the dose combination based on the estimated response rate using all the available observed data upon determination of the overall response in the current cohort. We compared the proposed method to the existing method using simulation studies. These demonstrated that the percentage of optimal dose combinations selected in the proposed method is not less than that in the existing method and that the trial duration in the proposed method is shortened compared to that in the existing method. The proposed method meets both ethical and financial requirements, and we believe it has the potential to contribute to expedite drug development. 相似文献
8.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome. 相似文献
9.
Heiko Götte Armin Schüler Marietta Kirchner Meinhard Kieser 《Pharmaceutical statistics》2015,14(6):515-524
In recent years, high failure rates in phase III trials were observed. One of the main reasons is overoptimistic assumptions for the planning of phase III resulting from limited phase II information and/or unawareness of realistic success probabilities. We present an approach for planning a phase II trial in a time‐to‐event setting that considers the whole phase II/III clinical development programme. We derive stopping boundaries after phase II that minimise the number of events under side conditions for the conditional probabilities of correct go/no‐go decision after phase II as well as the conditional success probabilities for phase III. In addition, we give general recommendations for the choice of phase II sample size. Our simulations show that unconditional probabilities of go/no‐go decision as well as the unconditional success probabilities for phase III are influenced by the number of events observed in phase II. However, choosing more than 150 events in phase II seems not necessary as the impact on these probabilities then becomes quite small. We recommend considering aspects like the number of compounds in phase II and the resources available when determining the sample size. The lower the number of compounds and the lower the resources are for phase III, the higher the investment for phase II should be. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
Clinical phase II trials in oncology are conducted to determine whether the activity of a new anticancer treatment is promising enough to merit further investigation. Two‐stage designs are commonly used for this situation to allow for early termination. Designs proposed in the literature so far have the common drawback that the sample sizes for the two stages have to be specified in the protocol and have to be adhered to strictly during the course of the trial. As a consequence, designs that allow a higher extent of flexibility are desirable. In this article, we propose a new adaptive method that allows an arbitrary modification of the sample size of the second stage using the results of the interim analysis or external information while controlling the type I error rate. If the sample size is not changed during the trial, the proposed design shows very similar characteristics to the optimal two‐stage design proposed by Chang et al. (Biometrics 1987; 43:865–874). However, the new design allows the use of mid‐course information for the planning of the second stage, thus meeting practical requirements when performing clinical phase II trials in oncology. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
Jianrong Wu 《Pharmaceutical statistics》2015,14(3):226-232
The current practice of designing single‐arm phase II survival trials is limited under the exponential model. Trial design under the exponential model may not be appropriate when a portion of patients are cured. There is no literature available for designing single‐arm phase II trials under the parametric cure model. In this paper, a test statistic is proposed, and a sample size formula is derived for designing single‐arm phase II trials under a class of parametric cure models. Extensive simulations showed that the proposed test and sample size formula perform very well under different scenarios. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Phase II clinical trials designed for evaluating a drug's treatment effect can be either single‐arm or double‐arm. A single‐arm design tests the null hypothesis that the response rate of a new drug is lower than a fixed threshold, whereas a double‐arm scheme takes a more objective comparison of the response rate between the new treatment and the standard of care through randomization. Although the randomized design is the gold standard for efficacy assessment, various situations may arise where a single‐arm pilot study prior to a randomized trial is necessary. To combine the single‐ and double‐arm phases and pool the information together for better decision making, we propose a Single‐To‐double ARm Transition design (START) with switching hypotheses tests, where the first stage compares the new drug's response rate with a minimum required level and imposes a continuation criterion, and the second stage utilizes randomization to determine the treatment's superiority. We develop a software package in R to calibrate the frequentist error rates and perform simulation studies to assess the trial characteristics. Finally, a metastatic pancreatic cancer trial is used for illustrating the decision rules under the proposed START design. 相似文献
13.
We develop a transparent and efficient two-stage nonparametric (TSNP) phase I/II clinical trial design to identify the optimal biological dose (OBD) of immunotherapy. We propose a nonparametric approach to derive the closed-form estimates of the joint toxicity–efficacy response probabilities under the monotonic increasing constraint for the toxicity outcomes. These estimates are then used to measure the immunotherapy's toxicity–efficacy profiles at each dose and guide the dose finding. The first stage of the design aims to explore the toxicity profile. The second stage aims to find the OBD, which can achieve the optimal therapeutic effect by considering both the toxicity and efficacy outcomes through a utility function. The closed-form estimates and concise dose-finding algorithm make the TSNP design appealing in practice. The simulation results show that the TSNP design yields superior operating characteristics than the existing Bayesian parametric designs. User-friendly computational software is freely available to facilitate the application of the proposed design to real trials. We provide comprehensive illustrations and examples about implementing the proposed design with associated software. 相似文献
14.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well. 相似文献
15.
Dose‐finding studies that aim to evaluate the safety of single agents are becoming less common, and advances in clinical research have complicated the paradigm of dose finding in oncology. A class of more complex problems, such as targeted agents, combination therapies and stratification of patients by clinical or genetic characteristics, has created the need to adapt early‐phase trial design to the specific type of drug being investigated and the corresponding endpoints. In this article, we describe the implementation of an adaptive design based on a continual reassessment method for heterogeneous groups, modified to coincide with the objectives of a Phase I/II trial of stereotactic body radiation therapy in patients with painful osseous metastatic disease. Operating characteristics of the Institutional Review Board approved design are demonstrated under various possible true scenarios via simulation studies. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献