首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new class of continuous distributions with two extra shape parameters named the generalized odd log-logistic family of distributions. The proposed family contains as special cases the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, two entropy measures and order statistics are obtained. We derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behaviour of the estimators by means of Monte Carlo simulations. We introduce the log-odd log-logistic Weibull regression model with censored data based on the odd log-logistic-Weibull distribution. The importance of the new family is illustrated using three real data sets. These applications indicate that this family can provide better fits than other well-known classes of distributions. The beauty and importance of the proposed family lies in its ability to model different types of real data.  相似文献   

2.
We introduce and study general mathematical properties of a new generator of continuous distributions with three extra parameters called the new generalized odd log-logistic family of distributions. The proposed family contains several important classes discussed in the literature as submodels such as the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a mixture of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, entropy measures, and order statistics, which hold for any baseline model, are presented. We also present certain characterization of the proposed distribution and derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behavior of the maximum likelihood estimator via simulation. The importance of the new family is illustrated by means of two real data sets. These applications indicate that the new family can provide better fits than other well-known classes of distributions. The beauty and importance of the new family lies in its ability to model real data.  相似文献   

3.
We introduce a new class of continuous distributions called the generalized transmuted-G family which extends the transmuted-G class. We provide six special models of the new family. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of three applications to real data sets.  相似文献   

4.
In this paper, a new method is proposed for generating discrete distributions. A special class of the distributions, namely, the T-geometric family contains the discrete analogues of continuous distributions. Some general properties of the T-geometric family of distributions are obtained. A member of the T-geometric family, namely, the exponentiated-exponential–geometric distribution is defined and studied. Various properties of the exponentiated-exponential–geometric distribution such as the unimodality, the moments and the probability generating function are discussed. The method of maximum likelihood estimation is proposed for estimating the model parameters. Three real data sets are used to illustrate the applications of the exponentiated-exponential–geometric distribution.  相似文献   

5.
《Statistical Methodology》2013,10(6):589-603
In this paper, a new method is proposed for generating discrete distributions. A special class of the distributions, namely, the T-geometric family contains the discrete analogues of continuous distributions. Some general properties of the T-geometric family of distributions are obtained. A member of the T-geometric family, namely, the exponentiated-exponential–geometric distribution is defined and studied. Various properties of the exponentiated-exponential–geometric distribution such as the unimodality, the moments and the probability generating function are discussed. The method of maximum likelihood estimation is proposed for estimating the model parameters. Three real data sets are used to illustrate the applications of the exponentiated-exponential–geometric distribution.  相似文献   

6.
We study general mathematical properties of a new class of continuous distributions with an extra positive parameter called the type I half-logistic family. We present some special models and investigate the asymptotics and shapes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive a power series for the quantile function. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics are determined. We introduce a bivariate extension of the new family. We discuss the estimation of the model parameters by maximum likelihood and illustrate its potentiality by means of two applications to real data.  相似文献   

7.
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.  相似文献   

8.
In this paper, a new family of continuous distributions called the exponentiated transmuted-G family is proposed which extends the transmuted-G family defined by Shaw and Buckley (2007). Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, and order statistics are derived. Some special models of the new family are provided. The maximum likelihood is used for estimating the model parameters. We provide the simulation results to assess the performance of the proposed model. The usefulness and flexibility of the new family is illustrated using real data.  相似文献   

9.
In this article, we proposed a new three-parameter probability distribution, called Topp–Leone normal, for modelling increasing failure rate data. The distribution is obtained by using Topp–Leone-X family of distributions with normal as a baseline model. The basic properties including moments, quantile function, stochastic ordering and order statistics are derived here. The estimation of unknown parameters is approached by the method of maximum likelihood, least squares, weighted least squares and maximum product spacings. An extensive simulation study is carried out to compare the long-run performance of the estimators. Applicability of the distribution is illustrated by means of three real data analyses over existing distributions.  相似文献   

10.
For the first time, we propose a new distribution so-called the beta generalized Rayleigh distribution that contains as special sub-models some well-known distributions. Expansions for the cumulative distribution and density functions are derived. We obtain explicit expressions for the moments, moment generating function, mean deviations, Bonferroni and Lorenz curves and densities of the order statistics and their moments. We estimate the parameters by maximum likelihood and provide the observed information matrix. The usefulness of the new distribution is illustrated through two real data sets that show that it is quite flexible in analyzing positive data instead of the generalized Rayleigh and Rayleigh distributions.  相似文献   

11.
Generalizing lifetime distributions is always precious for applied statisticians. In this paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by compounding EPL and geometric distributions. The new distribution arises in a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing, increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It contains several lifetime distributions as particular cases: EPL, new generalized Lindley, generalized Lindley, power Lindley and Lindley geometric distributions. We derive several properties of the new distribution such as closed-form expressions for the density, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Simulation studies are also provided. Finally, two real data applications are given for showing the flexibility and potentiality of the new distribution.  相似文献   

12.
Apostolos Batsidis 《Statistics》2015,49(6):1400-1421
A new method for generating new classes of distributions based on the probability-generating function is presented in Aly and Benkherouf [A new family of distributions based on probability generating functions. Sankhya B. 2011;73:70–80]. In particular, they focused their interest to the so-called Harris extended family of distributions. In this paper, we provide several general results regarding the Harris extended models such as the general behaviour of the failure rate function. We also derive a very useful representation for the Harris extended density function as an absolutely convergent power series of the survival function of the baseline distribution. Additionally, some stochastic order relations are established and limiting distributions of sample extremes are also considered for this model. These general results are illustrated in several special Harris extended models. Finally, we discuss estimation of the model parameters by the method of maximum likelihood and provide an application to real data for illustrative purposes.  相似文献   

13.
In this paper, a discrete counterpart of the general class of continuous beta-G distributions is introduced. A discrete analog of the beta generalized exponential distribution of Barreto-Souza et al. [2], as an important special case of the proposed class, is studied. This new distribution contains some previously known discrete distributions as well as two new models. The hazard rate function of the new model can be increasing, decreasing, bathtub-shaped and upside-down bathtub. Some distributional and moment properties of the new distribution as well as its order statistics are discussed. Estimation of the parameters is illustrated using the maximum likelihood method and, finally, the model with a real data set is examined.  相似文献   

14.
This paper considers the three‐parameter family of symmetric unimodal distributions obtained by wrapping the location‐scale extension of Student's t distribution onto the unit circle. The family contains the wrapped normal and wrapped Cauchy distributions as special cases, and can be used to closely approximate the von Mises distribution. In general, the density of the family can only be represented in terms of an infinite summation, but its trigonometric moments are relatively simple expressions involving modified Bessel functions. Point estimation of the parameters is considered, and likelihood‐based methods are used to fit the family of distributions in an illustrative analysis of cross‐bed measurements. The use of the family as a means of approximating the von Mises distribution is investigated in detail, and new efficient algorithms are proposed for the generation of approximate pseudo‐random von Mises variates.  相似文献   

15.
A new class of distributions called the log-logistic Weibull–Poisson distribution is introduced and its properties are explored. This new distribution represents a more flexible model for lifetime data. Some statistical properties of the proposed distribution including the expansion of the density function, quantile function, hazard and reverse hazard functions, moments, conditional moments, moment generating function, skewness and kurtosis are presented. Mean deviations, Bonferroni and Lorenz curves, Rényi entropy and distribution of the order statistics are derived. Maximum likelihood estimation technique is used to estimate the model parameters. A simulation study is conducted to examine the bias, mean square error of the maximum likelihood estimators and width of the confidence interval for each parameter and finally applications of the model to real data sets are presented to illustrate the usefulness of the proposed distribution.  相似文献   

16.
A family of distributions generated by an operator acting on generalized normal density is introduced. This family contains as particular cases many known distributions, including the generalized normal, generalized t, and generalized gamma distributions. Several mathematical properties of the family (including expansions, characteristic function, moments, cumulants, and order statistics properties) are derived. Estimation procedures are derived too by the method of moments, method of maximum likelihood, and the method of empirical characteristic function. A real data application is presented. Finally, extensions to the multivariate case are outlined.  相似文献   

17.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

18.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

19.
In this paper, we study some mathematical properties of the beta Weibull (BW) distribution, which is a quite flexible model in analysing positive data. It contains the Weibull, exponentiated exponential, exponentiated Weibull and beta exponential distributions as special sub-models. We demonstrate that the BW density can be expressed as a mixture of Weibull densities. We provide their moments and two closed-form expressions for their moment-generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and two entropies. The density of the BW-order statistics is a mixture of Weibull densities and two closed-form expressions are derived for their moments. The estimation of the parameters is approached by two methods: moments and maximum likelihood. We compare the performances of the estimates obtained from both the methods by simulation. The expected information matrix is derived. For the first time, we introduce a log-BW regression model to analyse censored data. The usefulness of the BW distribution is illustrated in the analysis of three real data sets.  相似文献   

20.
In this article, we propose an extension of the Maxwell distribution, so-called the extended Maxwell distribution. This extension is evolved by using the Maxwell-X family of distributions and Weibull distribution. We study its fundamental properties such as hazard rate, moments, generating functions, skewness, kurtosis, stochastic ordering, conditional moments and moment generating function, hazard rate, mean and variance of the (reversed) residual life, reliability curves, entropy, etc. In estimation viewpoint, the maximum likelihood estimation of the unknown parameters of the distribution and asymptotic confidence intervals are discussed. We also obtain expected Fisher’s information matrix as well as discuss the existence and uniqueness of the maximum likelihood estimators. The EMa distribution and other competing distributions are fitted to two real datasets and it is shown that the distribution is a good competitor to the compared distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号