首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Often the dependence in multivariate survival data is modeled through an individual level effect called the frailty. Due to its mathematical simplicity, the gamma distribution is often used as the frailty distribution for hazard modeling. However, it is well known that the gamma frailty distribution has many drawbacks. For example, it weakens the effect of covariates. In addition, in the presence of a multilevel model, overall frailty comes from several levels. To overcome such drawbacks, more heavy-tailed distributions are needed to model the frailty distribution in order to incorporate extra variability. In this article, we develop a class of log-skew-t distributions for the frailty. This class includes the log-normal distribution along with many other heavy tailed distributions, e.g., log-Cauchy, log normal, and log-t as special cases.

Conditional on the frailty, the survival times are assumed to be independent with proportional hazard structure. The modeling process is then completed by assuming multilevel frailty-effects. Instead of tuning a strict parameterization of the baseline hazard function, we consider the partial likelihood approach and thus leave the baseline function unspecified. By eliminating the hazard, the pre-specification and computation are simplified considerably.  相似文献   

2.
Because of limitations of the univariate frailty model in analysis of multivariate survival data, a bivariate frailty model is introduced for the analysis of bivariate survival data. This provides tremendous flexibility especially in allowing negative associations between subjects within the same cluster. The approach involves incorporating into the model two possibly correlated frailties for each cluster. The bivariate lognormal distribution is used as the frailty distribution. The model is then generalized to multivariate survival data with two distinguished groups and also to alternating process data. A modified EM algorithm is developed with no requirement of specification of the baseline hazards. The estimators are generalized maximum likelihood estimators with subject-specific interpretation. The model is applied to a mental health study on evaluation of health policy effects for inpatient psychiatric care.  相似文献   

3.
In this article, we consider shared frailty model with inverse Gaussian distribution as frailty distribution and log-logistic distribution (LLD) as baseline distribution for bivariate survival times. We fit this model to three real-life bivariate survival data sets. The problem of analyzing and estimating parameters of shared inverse Gaussian frailty is the interest of this article and then compare the results with shared gamma frailty model under the same baseline for considered three data sets. Data are analyzed using Bayesian approach to the analysis of clustered survival data in which there is a dependence of failure time observations within the same group. The variance component estimation provides the estimated dispersion of the random effects. We carried out a test for frailty (or heterogeneity) using Bayes factor. Model comparison is made using information criteria and Bayes factor. We observed that the shared inverse Gaussian frailty model with LLD as baseline is the better fit for all three bivariate data sets.  相似文献   

4.
We investigate the effect of unobserved heterogeneity in the context of the linear transformation model for censored survival data in the clinical trials setting. The unobserved heterogeneity is represented by a frailty term, with unknown distribution, in the linear transformation model. The bias of the estimate under the assumption of no unobserved heterogeneity when it truly is present is obtained. We also derive the asymptotic relative efficiency of the estimate of treatment effect under the incorrect assumption of no unobserved heterogeneity. Additionally we investigate the loss of power for clinical trials that are designed assuming the model without frailty when, in fact, the model with frailty is true. Numerical studies under a proportional odds model show that the loss of efficiency and the loss of power can be substantial when the heterogeneity, as embodied by a frailty, is ignored. An erratum to this article can be found at  相似文献   

5.
Clayton-type counting process formulations for survival data and parametric gamma models for cluster-specific frailty quantities are now routinely applied in analyses of clustered survival data. On the other hand, although nonparametric frailty models have been studied, they are not used much in practice. In this article, the distribution of the frailty terms is assumed to be an unknown random variable. The unknown frailty distribution is then modelled completely with a Dirichlet process prior. This prior assigns cluster units into sub-classes whose members have the same random frailty effect. The Gibbs sampler algorithm is used for computing posterior parameter estimates of the fixed effect hazards regression and the frailty distribution. The methodology is used to analyze community-clustered child survival in sub-Saharan Africa. The results show that the communities could be separated into fewer distinct classes of risk of childhood mortality; the fewer classes could be studied easily in order to provide useful guidance on the more effective use of resources for child health intervention programmes.  相似文献   

6.
Abstract

The frailties, representing extra variations due to unobserved measurements, are often assumed to be iid in shared frailty models. In medical applications, however, a speculation can arise that a data set might violate the iid assumption. In this paper we investigate this conjecture through an analysis of the kidney infection data in McGilchrist and Aisbett (McGilchrist, C. A., Aisbett, C. W. (1991). Regression with frailty in survival analysis. Biometrics 47:461–466). As a test procedure, we consider the cusum of squares test which is frequently used for monitoring a variance change in statistical models. Our result strongly sustains the heterogeneity of the frailty distribution.  相似文献   

7.
P. Economou 《Statistics》2013,47(2):453-464
Frailty models are often used to describe the extra heterogeneity in survival data by introducing an individual random, unobserved effect. The frailty term is usually assumed to act multiplicatively on a baseline hazard function common to all individuals. In order to apply the frailty model, a specific frailty distribution has to be assumed. If at least one of the latent variables is continuous, the frailty must follow a continuous distribution. In this paper, a finite mixture of continuous frailty distributions is used in order to describe situations in which one (or more) of the latent variables separates the population in study into two (or more) subpopulations. Closure properties of the unobserved quantity are given along with the maximum-likelihood estimates under the most common choices of frailty distributions. The model is illustrated on a set of lifetime data.  相似文献   

8.
Unexplained heterogeneity in univariate survival data and association in multivariate survival can both be modelled by the inclusion of frailty effects. This paper investigates the consequences of ignoring frailty in analysis, fitting misspecified Cox proportional hazards models to the marginal distributions. Regression coefficients are biased towards 0 by an amount which depends in magnitude on the variability of the frailty terms and the form of frailty distribution. The bias is reduced when censoring is present. Fitted marginal survival curves can also differ substantially from the true marginals.  相似文献   

9.
The median service lifetime of respirator safety devices produced by different manufacturers is determined using frailty models to account for unobserved differences in manufacturing processes and raw materials. The gamma and positive stable frailty distributions are used to obtain survival distribution estimates when the baseline hazard is assumed to be Weibull. Frailty distributions are compared using laboratory test data of the failure times for 104 respirator cartridges produced by 10 different manufacturers tested with three different challenge agents. Likelihood ratio tests indicate that both frailty models provide a significant improvement over a Weibull model assuming independence. Results are compared to fixed effects approaches for analysis of this data.  相似文献   

10.
The mixed linear model is a popular method for analysing unbalanced repeated measurement data. The classical statistical tests for parameters in this model are based on asymptotic theory that is unreliable in the small samples that are often encountered in practice. For testing a given fixed effect parameter with a small sample, we develop and investigate refined likelihood ratio (LR) tests. The refinements considered are the Bartlett correction and use of the Cox–Reid adjusted likelihood; these are examined separately and in combination. We illustrate the various LR tests on an actual data set and compare them in two simulation studies. The conventional LR test yields type I error rates that are higher than nominal. The adjusted LR test yields rates that are lower than nominal, with absolute accuracy similar to that of the conventional LR test in the first simulation study and better in the second. The Bartlett correction substantially improves the accuracy of the type I error rates with either the conventional or the adjusted LR test. In many cases, error rates that are very close to nominal are achieved with the refined methods.  相似文献   

11.
The gamma frailty model is a natural extension of the Cox proportional hazards model in survival analysis. Because the frailties are unobserved, an E-M approach is often used for estimation. Such an approach is shown to lead to finite sample underestimation of the frailty variance, with the corresponding regression parameters also being underestimated as a result. For the univariate case, we investigate the source of the bias with simulation studies and a complete enumeration. The rank-based E-M approach, we note, only identifies frailty through the order in which failures occur; additional frailty which is evident in the survival times is ignored, and as a result the frailty variance is underestimated. An adaption of the standard E-M approach is suggested, whereby the non-parametric Breslow estimate is replaced by a local likelihood formulation for the baseline hazard which allows the survival times themselves to enter the model. Simulations demonstrate that this approach substantially reduces the bias, even at small sample sizes. The method developed is applied to survival data from the North West Regional Leukaemia Register.  相似文献   

12.
Evolution of recurrent asthma event rate over time in frailty models   总被引:1,自引:0,他引:1  
Summary. To model the time evolution of the event rate in recurrent event data a crucial role is played by the timescale that is used. Depending on the timescale selected the interpretation of the time evolution will be entirely different, both in parametric and semiparametric frailty models. The gap timescale is more appropriate when studying the recurrent event rate as a function of time since the last event, whereas the calendar timescale keeps track of actual time. We show both timescales in action on data from an asthma prevention trial in young children. The frailty model is further extended to include both timescales simultaneously as this might be most relevant in practice.  相似文献   

13.
In this article, the Brier score is used to investigate the importance of clustering for the frailty survival model. For this purpose, two versions of the Brier score are constructed, i.e., a “conditional Brier score” and a “marginal Brier score.” Both versions of the Brier score show how the clustering effects and the covariate effects affect the predictive ability of the frailty model separately. Using a Bayesian and a likelihood approach, point estimates and 95% credible/confidence intervals are computed. The estimation properties of both procedures are evaluated in an extensive simulation study for both versions of the Brier score. Further, a validation strategy is developed to calculate an internally validated point estimate and credible/confidence interval. The ensemble of the developments is applied to a dental dataset.  相似文献   

14.
The paper compares several versions of the likelihood ratio test for exponential homogeneity against mixtures of two exponentials. They are based on different implementations of the likelihood maximization algorithm. We show that global maximization of the likelihood is not appropriate to obtain a good power of the LR test. A simple starting strategy for the EM algorithm, which under the null hypothesis often fails to find the global maximum, results in a rather powerful test. On the other hand, a multiple starting strategy that comes close to global maximization under both the null and the alternative hypotheses leads to inferior power.  相似文献   

15.
The estimation of random effects in frailty models is an important problem in survival analysis. Testing for the presence of random effects can be essential to improving model efficiency. Posterior consistency in dispersion parameters and coefficients of the frailty model was demonstrated in theory and simulations using the posterior induced by Cox’s partial likelihood and simple priors. We also conducted simulation studies to test for the presence of random effects; the proposed method performed well in several simulations. Data analysis was also conducted. The proposed method is easily tractable and can be used to develop various methods for Bayesian inference in frailty models.  相似文献   

16.
Sun W  Li H 《Lifetime data analysis》2004,10(3):229-245
The additive genetic gamma frailty model has been proposed for genetic linkage analysis for complex diseases to account for variable age of onset and possible covariates effects. To avoid ascertainment biases in parameter estimates, retrospective likelihood ratio tests are often used, which may result in loss of efficiency due to conditioning. This paper considers when the sibships are ascertained by having at least two affected sibs with the disease before a given age and provides two approaches for estimating the parameters in the additive gamma frailty model. One approach is based on the likelihood function conditioning on the ascertainment event, the other is based on maximizing a full ascertainment-adjusted likelihood. Explicit forms for these likelihood functions are derived. Simulation studies indicate that when the baseline hazard function can be correctly pre-specified, both approaches give accurate estimates of the model parameters. However, when the baseline hazard function has to be estimated simultaneously, only the ascertainment-adjusted likelihood method gives an unbiased estimate of the parameters. These results imply that the ascertainment-adjusted likelihood ratio test in the context of the additive genetic gamma frailty may be used for genetic linkage analysis.  相似文献   

17.
We propose frailty regression models in mixture distributions and assume the distribution of frailty as gamma or positive stable or power variance function distribution. We consider Weibull mixture as an example. There are some interesting situations like survival times in genetic epidemiology, dental implants of patients and twin births (both monozygotic and dizygotic) where genetic behavior (which is unknown and random) of patients follows a known frailty distribution. These are the situations which motivate to study this particular model.  相似文献   

18.
19.
Abstract

Frailty models are used in survival analysis to account for unobserved heterogeneity in individual risks to disease and death. To analyze bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), shared frailty models were suggested. Shared frailty models are frequently used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor(frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, we introduce shared gamma frailty models with reversed hazard rate. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply the proposed model to the Australian twin data set.  相似文献   

20.
This note investigates the negative dependence in frailty models. First, we show that the frailty variable and the overall population variable are negatively likelihood ratio dependent and derive an upper bound for the survival function of the population with higher frailty. Secondly, we prove that the DFR property and the logconvex hazard rate of the baseline variable imply the DLR property of the population variable. Finally, we further prove that the likelihood ratio order, hazard rate order and reversed hazard rate order between two frailty variables imply the likelihood ratio order, reversed hazard rate order, and hazard rate order between the corresponding overall population variables, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号