首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We can use wavelet shrinkage to estimate a possibly multivariate regression function g under the general regression setup, y = g + ε. We propose an enhanced wavelet-based denoising methodology based on Bayesian adaptive multiresolution shrinkage, an effective Bayesian shrinkage rule in addition to the semi-supervised learning mechanism. The Bayesian shrinkage rule is advanced by utilizing the semi-supervised learning method in which the neighboring structure of a wavelet coefficient is adopted and an appropriate decision function is derived. According to decision function, wavelet coefficients follow one of two prespecified Bayesian rules obtained using varying related parameters. The decision of a wavelet coefficient depends not only on its magnitude, but also on the neighboring structure on which the coefficient is located. We discuss the theoretical properties of the suggested method and provide recommended parameter settings. We show that the proposed method is often superior to several existing wavelet denoising methods through extensive experimentation.  相似文献   

2.
Bayesian inference of a generalized Weibull stress‐strength model (SSM) with more than one strength component is considered. For this problem, properly assigning priors for the reliabilities is challenging due to the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. Instead, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that this proposed prior performs well in terms of frequentist coverage and estimation even when the sample sizes are minimal. The prior is applied to two real datasets. The Canadian Journal of Statistics 41: 83–97; 2013 © 2012 Statistical Society of Canada  相似文献   

3.
For certain mixture models, improper priors are undesirable because they yield improper posteriors. However, proper priors may be undesirable because they require subjective input. We propose the use of specially chosen data-dependent priors. We show that, in some cases, data-dependent priors are the only priors that produce intervals with second-order correct frequentist coverage. The resulting posterior also has another interpretation: it is the product of a fixed prior and a pseudolikelihood.  相似文献   

4.
We propose a general procedure for constructing nonparametric priors for Bayesian inference. Under very general assumptions, the proposed prior selects absolutely continuous distribution functions, hence it can be useful with continuous data. We use the notion ofFeller-type approximation, with a random scheme based on the natural exponential family, in order to construct a large class of distribution functions. We show how one can assign a probability to such a class and discuss the main properties of the proposed prior, namedFeller prior. Feller priors are related to mixture models with unknown number of components or, more generally, to mixtures with unknown weight distribution. Two illustrations relative to the estimation of a density and of a mixing distribution are carried out with respect to well known data-set in order to evaluate the performance of our procedure. Computations are performed using a modified version of an MCMC algorithm which is briefly described.  相似文献   

5.
Abstract. We study the Jeffreys prior and its properties for the shape parameter of univariate skew‐t distributions with linear and nonlinear Student's t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student's t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location‐scale models under scale mixtures of skew‐normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew‐t distributions.  相似文献   

6.
Discrete data are collected in many application areas and are often characterised by highly-skewed distributions. An example of this, which is considered in this paper, is the number of visits to a specialist, often taken as a measure of demand in healthcare. A discrete Weibull regression model was recently proposed for regression problems with a discrete response and it was shown to possess desirable properties. In this paper, we propose the first Bayesian implementation of this model. We consider a general parametrization, where both parameters of the discrete Weibull distribution can be conditioned on the predictors, and show theoretically how, under a uniform non-informative prior, the posterior distribution is proper with finite moments. In addition, we consider closely the case of Laplace priors for parameter shrinkage and variable selection. Parameter estimates and their credible intervals can be readily calculated from their full posterior distribution. A simulation study and the analysis of four real datasets of medical records show promises for the wide applicability of this approach to the analysis of count data. The method is implemented in the R package BDWreg.  相似文献   

7.
Finite mixture of regression (FMR) models are aimed at characterizing subpopulation heterogeneity stemming from different sets of covariates that impact different groups in a population. We address the contemporary problem of simultaneously conducting covariate selection and determining the number of mixture components from a Bayesian perspective that can incorporate prior information. We propose a Gibbs sampling algorithm with reversible jump Markov chain Monte Carlo implementation to accomplish concurrent covariate selection and mixture component determination in FMR models. Our Bayesian approach contains innovative features compared to previously developed reversible jump algorithms. In addition, we introduce component-adaptive weighted g priors for regression coefficients, and illustrate their improved performance in covariate selection. Numerical studies show that the Gibbs sampler with reversible jump implementation performs well, and that the proposed weighted priors can be superior to non-adaptive unweighted priors.  相似文献   

8.
The authors develop default priors for the Gaussian random field model that includes a nugget parameter accounting for the effects of microscale variations and measurement errors. They present the independence Jeffreys prior, the Jeffreys‐rule prior and a reference prior and study posterior propriety of these and related priors. They show that the uniform prior for the correlation parameters yields an improper posterior. In case of known regression and variance parameters, they derive the Jeffreys prior for the correlation parameters. They prove posterior propriety and obtain that the predictive distributions at ungauged locations have finite variance. Moreover, they show that the proposed priors have good frequentist properties, except for those based on the marginal Jeffreys‐rule prior for the correlation parameters, and illustrate their approach by analyzing a dataset of zinc concentrations along the river Meuse. The Canadian Journal of Statistics 40: 304–327; 2012 © 2012 Statistical Society of Canada  相似文献   

9.
The Weibull distribution is widely used due to its versatility and relative simplicity. In our paper, the non informative priors for the ratio of the scale parameters of two Weibull models are provided. The asymptotic matching of coverage probabilities of Bayesian credible intervals is considered, with the corresponding frequentist coverage probabilities. We developed the various priors for the ratio of two scale parameters using the following matching criteria: quantile matching, matching of distribution function, highest posterior density matching, and inversion of test statistics. One particular prior, which meets all the matching criteria, is found. Next, we derive the reference priors for groups of ordering. We see that all the reference priors satisfy a first-order matching criterion and that the one-at-a-time reference prior is a second-order matching prior. A simulation study is performed and an example given.  相似文献   

10.
New methodology for fully Bayesian mixture analysis is developed, making use of reversible jump Markov chain Monte Carlo methods that are capable of jumping between the parameter subspaces corresponding to different numbers of components in the mixture. A sample from the full joint distribution of all unknown variables is thereby generated, and this can be used as a basis for a thorough presentation of many aspects of the posterior distribution. The methodology is applied here to the analysis of univariate normal mixtures, using a hierarchical prior model that offers an approach to dealing with weak prior information while avoiding the mathematical pitfalls of using improper priors in the mixture context.  相似文献   

11.
The posterior predictive p value (ppp) was invented as a Bayesian counterpart to classical p values. The methodology can be applied to discrepancy measures involving both data and parameters and can, hence, be targeted to check for various modeling assumptions. The interpretation can, however, be difficult since the distribution of the ppp value under modeling assumptions varies substantially between cases. A calibration procedure has been suggested, treating the ppp value as a test statistic in a prior predictive test. In this paper, we suggest that a prior predictive test may instead be based on the expected posterior discrepancy, which is somewhat simpler, both conceptually and computationally. Since both these methods require the simulation of a large posterior parameter sample for each of an equally large prior predictive data sample, we furthermore suggest to look for ways to match the given discrepancy by a computation‐saving conflict measure. This approach is also based on simulations but only requires sampling from two different distributions representing two contrasting information sources about a model parameter. The conflict measure methodology is also more flexible in that it handles non‐informative priors without difficulty. We compare the different approaches theoretically in some simple models and in a more complex applied example.  相似文献   

12.
The implementation of the Bayesian paradigm to model comparison can be problematic. In particular, prior distributions on the parameter space of each candidate model require special care. While it is well known that improper priors cannot be routinely used for Bayesian model comparison, we claim that also the use of proper conventional priors under each model should be regarded as suspicious, especially when comparing models having different dimensions. The basic idea is that priors should not be assigned separately under each model; rather they should be related across models, in order to acquire some degree of compatibility, and thus allow fairer and more robust comparisons. In this connection, the intrinsic prior as well as the expected posterior prior (EPP) methodology represent a useful tool. In this paper we develop a procedure based on EPP to perform Bayesian model comparison for discrete undirected decomposable graphical models, although our method could be adapted to deal also with directed acyclic graph models. We present two possible approaches. One based on imaginary data, and one which makes use of a limited number of actual data. The methodology is illustrated through the analysis of a 2×3×4 contingency table.  相似文献   

13.
This article focused on the definition and the study of a binary Bayesian criterion which measures a statistical agreement between a subjective prior and data information. The setting of this work is concrete Bayesian studies. It is an alternative and a complementary tool to the method recently proposed by Evans and Moshonov, [M. Evans and H. Moshonov, Checking for Prior-data conflict, Bayesian Anal. 1 (2006), pp. 893–914]. Both methods try to help the work of the Bayesian analyst, from preliminary to the posterior computation. Our criterion is defined as a ratio of Kullback–Leibler divergences; two of its main features are to make easy the check of a hierarchical prior and be used as a default calibration tool to obtain flat but proper priors in applications. Discrete and continuous distributions exemplify the approach and an industrial case study in reliability, involving the Weibull distribution, is highlighted.  相似文献   

14.
ABSTRACT

We introduce a semi-parametric Bayesian approach based on skewed Dirichlet processes priors for location parameters in the ordinal calibration problem. This approach allows the modeling of asymmetrical error distributions. Conditional posterior distributions are implemented, thus allowing the use of Markov chains Monte Carlo to generate the posterior distributions. The methodology is applied to both simulated and real data.  相似文献   

15.
In this paper, we consider the estimation of the stress–strength parameter R=P(Y<X) when X and Y are independent and both are modified Weibull distributions with the common two shape parameters but different scale parameters. The Markov Chain Monte Carlo sampling method is used for posterior inference of the reliability of the stress–strength model. The maximum-likelihood estimator of R and its asymptotic distribution are obtained. Based on the asymptotic distribution, the confidence interval of R can be obtained using the delta method. We also propose a bootstrap confidence interval of R. The Bayesian estimators with balanced loss function, using informative and non-informative priors, are derived. Different methods and the corresponding confidence intervals are compared using Monte Carlo simulations.  相似文献   

16.
We propose a more efficient version of the slice sampler for Dirichlet process mixture models described by Walker (Commun. Stat., Simul. Comput. 36:45–54, 2007). This new sampler allows for the fitting of infinite mixture models with a wide-range of prior specifications. To illustrate this flexibility we consider priors defined through infinite sequences of independent positive random variables. Two applications are considered: density estimation using mixture models and hazard function estimation. In each case we show how the slice efficient sampler can be applied to make inference in the models. In the mixture case, two submodels are studied in detail. The first one assumes that the positive random variables are Gamma distributed and the second assumes that they are inverse-Gaussian distributed. Both priors have two hyperparameters and we consider their effect on the prior distribution of the number of occupied clusters in a sample. Extensive computational comparisons with alternative “conditional” simulation techniques for mixture models using the standard Dirichlet process prior and our new priors are made. The properties of the new priors are illustrated on a density estimation problem.  相似文献   

17.
In this paper, we propose a mixture of beta–Dirichlet processes as a nonparametric prior for the cumulative intensity functions of a Markov process. This family of priors is a natural extension of a mixture of Dirichlet processes or a mixture of beta processes which are devised to compromise advantages of parametric and nonparametric approaches. They give most of their prior mass to the small neighborhood of a specific parametric model. We show that a mixture of beta–Dirichlet processes prior is conjugate with Markov processes. Formulas for computing the posterior distribution are derived. Finally, results of analyzing credit history data are given.  相似文献   

18.
We consider an empirical Bayes approach to standard nonparametric regression estimation using a nonlinear wavelet methodology. Instead of specifying a single prior distribution on the parameter space of wavelet coefficients, which is usually the case in the existing literature, we elicit the ?-contamination class of prior distributions that is particularly attractive to work with when one seeks robust priors in Bayesian analysis. The type II maximum likelihood approach to prior selection is used by maximizing the predictive distribution for the data in the wavelet domain over a suitable subclass of the ?-contamination class of prior distributions. For the prior selected, the posterior mean yields a thresholding procedure which depends on one free prior parameter and it is level- and amplitude-dependent, thus allowing better adaptation in function estimation. We consider an automatic choice of the free prior parameter, guided by considerations on an exact risk analysis and on the shape of the thresholding rule, enabling the resulting estimator to be fully automated in practice. We also compute pointwise Bayesian credible intervals for the resulting function estimate using a simulation-based approach. We use several simulated examples to illustrate the performance of the proposed empirical Bayes term-by-term wavelet scheme, and we make comparisons with other classical and empirical Bayes term-by-term wavelet schemes. As a practical illustration, we present an application to a real-life data set that was collected in an atomic force microscopy study.  相似文献   

19.
In this paper, we present an innovative method for constructing proper priors for the skewness (shape) parameter in the skew‐symmetric family of distributions. The proposed method is based on assigning a prior distribution on the perturbation effect of the shape parameter, which is quantified in terms of the total variation distance. We discuss strategies to translate prior beliefs about the asymmetry of the data into an informative prior distribution of this class. We show via a Monte Carlo simulation study that our non‐informative priors induce posterior distributions with good frequentist properties, similar to those of the Jeffreys prior. Our informative priors yield better results than their competitors from the literature. We also propose a scale‐invariant and location‐invariant prior structure for models with unknown location and scale parameters and provide sufficient conditions for the propriety of the corresponding posterior distribution. Illustrative examples are presented using simulated and real data.  相似文献   

20.
Bayesian analyses often take for granted the assumption that the posterior distribution has at least a first moment. They often include computed or estimated posterior means. In this note, the authors show an example of a Weibull distribution parameter where the theoretical posterior mean fails to exist for commonly used proper semi–conjugate priors. They also show that posterior moments can fail to exist with commonly used noninformative priors including Jeffreys, reference and matching priors, despite the fact that the posteriors are proper. Moreover, within a broad class of priors, the predictive distribution also has no mean. The authors illustrate the problem with a simulated example. Their results demonstrate that the unwitting use of estimated posterior means may yield unjustified conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号