首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The traditional design procedure for selecting the parameters of EWMA charts is based on the average run length (ARL). It is shown that for some types of EWMA charts, such a procedure may lead to high probability of a false out-of-control signal. An alternative procedure based on both the ARL and the standard deviation of run length (SRL) is recommended. It is shown that, with the new procedure, the EWMA chart using its exact variance can detect moderate and large shifts of the process mean faster.  相似文献   

3.
The main objective of this article is to scrutinize the efficiency and verify the performance superiority of the one-sided EWMA control chart on high-yield processes. The proposed control chart is designed to detect both upward and downward shifts of the fraction of non conforming products and is developed based on non transformed geometric counts. Its algorithmic function is theoretically established and numerous performance measures are extracted using analytical methods based on the Markov modeling of the chart. Comparisons with traditional high yield control charts are conducted. Optimality tables and nomograms are included to help graphical determination of the optimal chart parameters.  相似文献   

4.
ABSTRACT

The EWMA control chart is used to detect small shifts in a process. It has been shown that, for certain values of the smoothing parameter, the EWMA chart for the mean is robust to non normality. In this article, we examine the case of non normality in the EWMA charts for the dispersion. It is shown that we can have an EWMA chart for dispersion robust to non normality when non normality is not extreme.  相似文献   

5.
In this paper, a control chart has been developed for the Conway–Maxwell Poisson (COM-Poisson) distribution using the modified exponentially weighted moving average statistic. The proposed chart provides an efficient detection of smaller changes in the location parameter of the COM-Poisson distribution. The performance of the proposed control chart has been evaluated by the average and the standard deviation of the run length distribution for various parameters. Better detecting ability has also been compared with the existing control chart using EWMA statistic. Using simulation, we also showed the detecting ability over the traditional EWMA chart.  相似文献   

6.
The Poisson GWMA (PGWMA) control chart is an extension model of Poisson EWMA chart. It is substantially sensitive to small process shifts for monitoring Poisson observations. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. In this article, we employ these approaches in PGWMA charts and introduce a novel chart called Poisson double GWMA (PDGWMA) chart for comparison. Using simulation, various control schemes are designed and their average run lengths (ARLs) are computer and compared. It is shown that the PDGWMA chart is the first choice in detecting small shifts especially when the shifts are downward, and the PGWMA chart with adjusted time-varying control limits performs excellently in detecting great process shifts during the initial stage.  相似文献   

7.

In this article we propose three distribution-free (or nonparametric) statistical quality control charts for monitoring a process center when an in-control target center is not specified. These charts are of the Shewhart-type, the exponentially moving average-type, and the cumulative sum-type. The constructions of the proposed charts require the availability of an initial reference sample taken when the process was operating in-control to calculate an estimator for the unknown in-control target process center. This estimated center is then used in the calculation of signed-rank-like statistics based on grouped observations taken periodically from the process output. As long as the in-control process underlying distribution is continuous and symmetric, the proposed charts have a constant in-control average run length and a constant false alarm rate irrespective of the process underlying distribution. Other advantages of the proposed distribution-free charts include their robustness against outliers and their superior efficiency over the traditional normal-based control charts when applied to processes with moderate- or heavy-tailed underlying distributions, such as the double exponential or the Cauchy distributions.  相似文献   

8.
Standard multivariate control charts usually employ fixed sample sizes at equal sampling intervals to monitor a process. In this study, a multivariate exponential weighted moving average (MEWMA) chart with adaptive sample sizes is investigated. Performance measure of the adaptive-sample-size MEWMA chart is obtained through a Markov chain approach. The performance of the adaptive-sample-size MEWMA chart is compared with the fixed-sample-size control chart in terms of steady-state average run length for different magnitude of shifts in the process mean. It is shown that the adaptive-sample-size chart is more efficient than the fixed-sample-size MEWMA control chart in detecting shifts in the process mean.  相似文献   

9.
In a process, the deviation from location or scale parameters affects the quality of the process and waste resources. So it is essential to monitor such processes for possible changes due to any assignable causes. Control charts are the most famous tool used to meet this intention. It is useless to monitor process location until the assurance that process dispersion is in-control. This study proposes some new two-sided memory control charts named as progressive variance (PV) control charts which are based on sample variance to monitor changes in process dispersion assuming normality of quality characteristic to be monitored. Simulation studies are made, and an example is discussed to evaluate the performance of the proposed charts. The comparison of the proposed chart is made with exponentially weighted moving average- and cumulative sum-type charts for process dispersion. The study shows that performance of the proposed charts are uniformly better than its competitors for detecting positive shifts while for detecting negative shift in the variance their performance is better for small shifts and reasonably good for moderated shifts.  相似文献   

10.
ABSTRACT

In the design of CUSUM control charts, it is common to use charts, tables, or software to find an appropriate critical threshold (h). This article provides an approximate formula to calculate the threshold directly from prespecified values of the reference value (k) and the in-control average run length (ARL0). Formulas are also provided for choosing k and h from prespecified values of the in-control and out-of-control average run lengths.  相似文献   

11.
Control charts have been used effectively for years to monitor processes and detect abnormal behaviors. However, most control charts require a specific distribution to establish their control limits. The bootstrap method is a nonparametric technique that does not rely on the assumption of a parametric distribution of the observed data. Although the bootstrap technique has been used to develop univariate control charts to monitor a single process, no effort has been made to integrate the effectiveness of the bootstrap technique with multivariate control charts. In the present study, we propose a bootstrap-based multivariate T 2 control chart that can efficiently monitor a process when the distribution of observed data is nonnormal or unknown. A simulation study was conducted to evaluate the performance of the proposed control chart and compare it with a traditional Hotelling's T 2 control chart and the kernel density estimation (KDE)-based T 2 control chart. The results showed that the proposed chart performed better than the traditional T 2 control chart and performed comparably with the KDE-based T 2 control chart. Furthermore, we present a case study to demonstrate the applicability of the proposed control chart to real situations.  相似文献   

12.
ABSTRACT

In this work, we proposed an adaptive multivariate cumulative sum (CUSUM) statistical process control chart for signaling a range of location shifts. This method was based on the multivariate CUSUM control chart proposed by Pignatiello and Runger (1990 Pignatiello, J.J., Runger, G.C. (1990). Comparisons of multivariate CUSUM charts. J. Qual. Technol. 22(3):173186.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]), but we adopted the adaptive approach similar to that discussed by Dai et al. (2011 Dai, Y., Luo, Y., Li, Z., Wang, Z. (2011). A new adaptive CUSUM control chart for detecting the multivariate process mean. Qual. Reliab. Eng. Int. 27(7):877884.[Crossref], [Web of Science ®] [Google Scholar]), which was based on a different CUSUM method introduced by Crosier (1988 Crosier, R.B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics 30(3):291303.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). The reference value in this proposed procedure was changed adaptively in each run, with the current mean shift estimated by exponentially weighted moving average (EWMA) statistic. By specifying the minimal magnitude of the mean shift, our proposed control chart achieved a good overall performance for detecting a range of shifts rather than a single value. We compared our adaptive multivariate CUSUM method with that of Dai et al. (2001 Dai, Y., Luo, Y., Li, Z., Wang, Z. (2011). A new adaptive CUSUM control chart for detecting the multivariate process mean. Qual. Reliab. Eng. Int. 27(7):877884.[Crossref], [Web of Science ®] [Google Scholar]) and the non adaptive versions of these two methods, by evaluating both the steady state and zero state average run length (ARL) values. The detection efficiency of our method showed improvements over the comparative methods when the location shift is unknown but falls within an expected range.  相似文献   

13.
Normally, an average run length (ARL) is used as a measure for evaluating the detecting performance of a multivariate control chart. This has a direct impact on the false alarm cost in Phase II. In this article, we first conduct a simulation study to calculate both in-control and out-of-control ARLs under various combinations of process shifts and number of samples. Then, a trade-off analysis between sampling inspection and false alarm costs is performed. Both the simulation results and trade-off analysis suggest that the optimal number of samples for constructing a multivariate control chart in Phase I can be determined.  相似文献   

14.
Adaptive control charts have been developed for improving the capability of control charts in detecting small shifts. In this article, we propose a new exponential weighted moving average control chart with variable sample size, in which the sample size is determined as an integer linear function by EWMA statistic value. The performance of the proposed VSS EWMA control chart is compared with FSS EWMA as well as traditional VSS EWMA control charts. The results show the better performance of the proposed VSS strategy respect to the traditional one and fixed sample size.  相似文献   

15.
Abstract

In this article, a new non parametric control chart based on the modified or controlled exponentially weighted moving average (EWMA) statistic is developed to monitor the process deviation from the target value. The proposed control chart is evaluated for different values of design parameters using the average run length as a performance criterion under various sample sizes. The proposed chart is compared with the existing non parametric EWMA sign control chart. It is observed that the proposed chart is better than the existing EWMA sign control chart in terms of run length characteristics. An empirical example is provided for the practical implementation of the proposed chart.  相似文献   

16.
ABSTRACT

This article develops an exponentially weighted moving average (EWMA) control chart using an auxiliary variable and repetitive sampling for efficient detection of small to moderate shifts in location. A EWMA statistic of a product estimator of the average (which utilities the information of auxiliary variables as well as repetitive sampling) is plotted on the proposed chart. The control chart coefficients of the proposed EWMA chart are determined for two strategic limits known as outer and inner control limits for the target in-control average run length. The performance of the proposed EWMA chart is studied using average run length when a shift occurs in the process average. The efficiency of the developed chart is compared with the competitive existing control charts. The results of the study revealed that proposed EWMA chart is more efficient than others to detect small changes in process mean.  相似文献   

17.
Statistical design is applied to a multivariate exponentially weighted moving average (MEWMA) control chart. The chart parameters are control limit H and smoothing constant r. The choices of the parameters depend on the number of variables p and the size of the process mean shift δ. The MEWMA statistic is modeled as a Markov chain and the Markov chain approach is used to determine the properties of the chart. Although average run length has become a traditional measure of the performance of control schemes, some authors have suggested other measures, such as median and other percentiles of the run length distribution to explain run length properties of a control scheme. This will allow a thorough study of the performance of the control scheme. Consequently, conclusions based on these measures would provide a better and comprehensive understanding of a scheme. In this article, we present the performance of the MEWMA control chart as measured by the average run length and median run length. Graphs are given so that the chart parameters of an optimal MEWMA chart can be determined easily.  相似文献   

18.
Statistical control charts are often used in industry to monitor processes in the interests of quality improvement. Such charts assume independence and normality of the control statistic, but these assumptions are often violated in practice. To better capture the true shape of the underlying distribution of the control statistic, we utilize the g-and-k distributions to estimate probability limits, the true ARL, and the error in confidence that arises from incorrectly assuming normality. A sensitivity assessment reveals that the extent of error in confidence associated with control chart decision-making procedures increases more rapidly as the distribution becomes more skewed or as the tails of the distribution become longer than those of the normal distribution. These methods are illustrated using both a frequentist and computational Bayesian approach to estimate the g-and-k parameters in two different practical applications. The Bayesian approach is appealing because it can account for prior knowledge in the estimation procedure and yields posterior distributions of parameters of interest such as control limits.  相似文献   

19.
ABSTRACT

Recently considerable research has been devoted to monitoring increases of incidence rate of adverse rare events. This paper extends some one-sided upper exponentially weighted moving average (EWMA) control charts from monitoring normal means to monitoring Poisson rate when sample sizes are varying over time. The approximated average run length bounds are derived for these EWMA-type charts and compared with the EWMA chart previously studied. Extensive simulations have been conducted to compare the performance of these EWMA-type charts. An illustrative example is given.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号