首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article examines the pricing policy of a monopolist seller who may sell in advance of consumption in a market that comprises of myopic consumers, forward‐looking consumers, and speculators. The latter group has no consumption value for the goods and is in the market with the sole objective of making a profit by reselling the purchased goods shortly after. Consumers, although homogeneous in terms of their valuations, are different with respect to their perspectives. We show that in an “upward” market where the expected valuation increases over time, the optimal pricing policy is an ex ante “static” one where the seller “prices into the future” and prices the myopic consumers out of the advance market. However, in a “downward” market where the expected valuation decreases over time, the seller adopts a dynamic pricing strategy except for the case when higher initial sales can trigger more demand subsequently and when the downward trend is not too high. In this case, the seller prefers an ex ante “static” pricing strategy and deliberately prices lower initially to sell to speculators. We identify the conditions under which the seller benefits from the existence of speculators in the market. Moreover, although the presence of entry costs is ineffective as an entry deterrence, we determine the conditions under which exit costs can rein in speculative purchase.  相似文献   

2.
We examine the critical role of advance supply signals—such as suppliers’ financial health and production viability—in dynamic supply risk management. The firm operates an inventory system with multiple demand classes and multiple suppliers. The sales are discretionary and the suppliers are susceptible to both systematic and operational risks. We develop a hierarchical Markov model that captures the essential features of advance supply signals, and integrate it with procurement and selling decisions. We characterize the optimal procurement and selling policy, and the strategic relationship between signal‐based forecast, multi‐sourcing, and discretionary selling. We show that higher demand heterogeneity may reduce the value of discretionary selling, and that the mean value‐based forecast may outperform the stationary distribution‐based forecast. This work advances our understanding on when and how to use advance supply signals in dynamic risk management. Future supply risk erodes profitability but enhances the marginal value of current inventory. A signal of future supply shortage raises both base stock and demand rationing levels, thereby boosting the current production and tightening the current sales. Signal‐based dynamic forecast effectively guides the firm's procurement and selling decisions. Its value critically depends on supply volatility and scarcity. Ignoring advance supply signals can result in misleading recommendations and severe losses. Signal‐based dynamic supply forecast should be used when: (a) supply uncertainty is substantial, (b) supply‐demand ratio is moderate, (c) forecast precision is high, and (d) supplier heterogeneity is high.  相似文献   

3.
本文研究一类新的多产品库存控制策略,即具有多元马氏需求特征的多产品多阶段的订货点订货量(Q, R, SS)策略,该策略考虑市场需求在不同产品之间具有多元马氏转移特征,并考虑缺货因素设置安全库存。论文首先建立了多产品多阶段的多元马氏需求预测模型,并通过该模型确定了各种产品需求之间的关系。同时,在该模型的理论基础上,提出了多产品多阶段的总期望成本模型及其最优(Q, R, SS)策略,进而结合算例给出模型的最优策略的数值解。  相似文献   

4.
We extend the Clark–Scarf serial multi‐echelon inventory model to include procuring production inputs under short‐term take‐or‐pay contracts at one or more stages. In each period, each such stage has the option to order/process at two different cost rates; the cheaper rate applies to units up to the contract quantity selected in the previous period. We prove that in each period and at each such stage, there are three base‐stock levels that characterize an optimal policy, two for the inventory policy and one for the contract quantity selection policy. The optimal cost function is additively separable in its state variables, leading to conquering the curse of dimensionality and the opportunity to manage the supply chain using independently acting managers. We develop conditions under which myopic policies are optimal and illustrate the results using numerical examples. We establish and use a generic one‐period result, which generalizes an important such result in the literature. Extensions to cover variants of take‐or‐pay contracts are included. Limitations are discussed.  相似文献   

5.
We analyze a model that integrates demand shaping via dynamic pricing and risk mitigation via supply diversification. The firm under consideration replenishes a certain product from a set of capacitated suppliers for a price‐dependent demand in each period. Under deterministic capacities, we derive a multilevel base stock list price policy and establish the optimality of cost‐based supplier selection, that is, ordering from a cheaper source before more expensive ones. With general random capacities, however, neither result holds. While it is optimal to price low for a high inventory level, the optimal order quantities are not monotone with respect to the inventory level. In general, a near reorder‐point policy should be followed. Specifically, there is a reorder point for each supplier such that no order is issued to him when the inventory level is above this point and a positive order is placed almost everywhere when the inventory level is below this point. Under this policy, it may be profitable to order exclusively from the most expensive source. We characterize conditions under which a strict reorder‐point policy and a cost‐based supplier‐selection criterion become optimal. Moreover, we quantify the benefit from dynamic pricing, as opposed to static pricing, and the benefit from multiple sourcing, as opposed to single sourcing. We show that these two strategies exhibit a substitutable relationship. Dynamic pricing is less effective under multiple sourcing than under single sourcing, and supplier diversification is less valuable with price adjustments than without. Under limited supply, dynamic pricing yields a robust, long‐term profit improvement. The value of supply diversification, in contrast, mainly comes from added capacities and is most significant in the short run.  相似文献   

6.
This study develops a comprehensive framework to optimize new product introduction timing and subsequent production decisions faced by a component supplier. Prior to market entry, the supplier performs process design activities, which improve manufacturing yield and the chances of getting qualified for the customer's product. However, a long delay in market entry allows competitors to enter the market and pass the customer's qualification process before the supplier, reducing the supplier's share of the customer's business. After entering the market and if qualified, the supplier also needs to decide how much to produce for a finite planning horizon by considering several factors such as manufacturing yield and stochastic demand, both of which depend on the earlier time‐to‐market decision. To capture this dependency, we develop a sequential, nested, two‐stage decision framework to optimize the time‐to‐market and production decisions in relation to each other. We show that the supplier's optimal market entry and qualification timing decision need to be revised in real time based on the number of qualified competitors at the time of market‐entry decision. We establish the optimality of a threshold policy. Following this policy, at the beginning of each decision epoch, the supplier should optimally stop preparing for qualification and decide whether to enter the market if her order among qualified competitors exceeds a predetermined threshold. We also prove that the supplier's optimal production policy is a state‐dependent, base‐stock policy, which depends on the time‐to‐market and qualification decisions. The proposed framework also enables a firm to quantify how market conditions (such as price and competitor entry behavior) and operating conditions (such as the rate of learning and inventory/production‐related costs) affect time‐to‐market strategy and post‐entry production decisions.  相似文献   

7.
We characterize optimal mechanisms for the multiple‐good monopoly problem and provide a framework to find them. We show that a mechanism is optimal if and only if a measure μ derived from the buyer's type distribution satisfies certain stochastic dominance conditions. This measure expresses the marginal change in the seller's revenue under marginal changes in the rent paid to subsets of buyer types. As a corollary, we characterize the optimality of grand‐bundling mechanisms, strengthening several results in the literature, where only sufficient optimality conditions have been derived. As an application, we show that the optimal mechanism for n independent uniform items each supported on [c,c+1] is a grand‐bundling mechanism, as long as c is sufficiently large, extending Pavlov's result for two items Pavlov, 2011. At the same time, our characterization also implies that, for all c and for all sufficiently large n, the optimal mechanism for n independent uniform items supported on [c,c+1] is not a grand‐bundling mechanism.  相似文献   

8.
A pre‐pack is a collection of items used in retail distribution. By grouping multiple units of one or more stock keeping units (SKU), distribution and handling costs can be reduced; however, ordering flexibility at the retail outlet is limited. This paper studies an inventory system at a retail level where both pre‐packs and individual items (at additional handling cost) can be ordered. For a single‐SKU, single‐period problem, we show that the optimal policy is to order into a “band” with as few individual units as possible. For the multi‐period problem with modular demand, the band policy is still optimal, and the steady‐state distribution of the target inventory position possesses a semi‐uniform structure, which greatly facilitates the computation of optimal policies and approximations under general demand. For the multi‐SKU case, the optimal policy has a generalized band structure. Our numerical results show that pre‐pack use is beneficial when facing stable and complementary demands, and substantial handling savings at the distribution center. The cost premium of using simple policies, such as strict base‐stock and batch‐ordering (pre‐packs only), can be substantial for medium parameter ranges.  相似文献   

9.
We consider an assemble‐to‐order (ATO) system with multiple products, multiple components which may be demanded in different quantities by different products, possible batch ordering of components, random lead times, and lost sales. We model the system as an infinite‐horizon Markov decision process under the average cost criterion. A control policy specifies when a batch of components should be produced, and whether an arriving demand for each product should be satisfied. Previous work has shown that a lattice‐dependent base‐stock and lattice‐dependent rationing (LBLR) policy is an optimal stationary policy for a special case of the ATO model presented here (the generalized M‐system). In this study, we conduct numerical experiments to evaluate the use of an LBLR policy for our general ATO model as a heuristic, comparing it to two other heuristics from the literature: a state‐dependent base‐stock and state‐dependent rationing (SBSR) policy, and a fixed base‐stock and fixed rationing (FBFR) policy. Remarkably, LBLR yields the globally optimal cost in each of more than 22,500 instances of the general problem, outperforming SBSR and FBFR with respect to both objective value (by up to 2.6% and 4.8%, respectively) and computation time (by up to three orders and one order of magnitude, respectively) in 350 of these instances (those on which we compare the heuristics). LBLR and SBSR perform significantly better than FBFR when replenishment batch sizes imperfectly match the component requirements of the most valuable or most highly demanded product. In addition, LBLR substantially outperforms SBSR if it is crucial to hold a significant amount of inventory that must be rationed.  相似文献   

10.
This study analyzes optimal replenishment policies that minimize expected discounted cost of multi‐product stochastic inventory systems. The distinguishing feature of the multi‐product inventory system that we analyze is the existence of correlated demand and joint‐replenishment costs across multiple products. Our objective is to understand the structure of the optimal policy and use this structure to construct a heuristic method that can solve problems set in real‐world sizes/dimensions. Using an MDP formulation we first compute the optimal policy. The optimal policy can only be computed for problems with a small number of product types due to the curse of dimensionality. Hence, using the insight gained from the optimal policy, we propose a class of policies that captures the impact of demand correlation on the structure of the optimal policy. We call this class (scdS)‐policies, and also develop an algorithm to compute good policies in this class, for large multi‐product problems. Finally using an exhaustive set of computational examples we show that policies in this class very closely approximate the optimal policy and can outperform policies analyzed in prior literature which assume independent demand. We have also included examples that illustrate performance under the average cost objective.  相似文献   

11.
We study a minimum total commitment (MTC) contract embedded in a finite‐horizon periodic‐review inventory system. Under this contract, the buyer commits to purchase a minimum quantity of a single product from the supplier over the entire planning horizon. We consider nonstationary demand and per‐unit cost, discount factor, and nonzero setup cost. Because the formulations used in existing literature are unable to handle our setting, we develop a new formulation based on a state transformation technique using unsold commitment instead of unbought commitment as state variable. We first revisit the zero setup cost case and show that the optimal ordering policy is an unsold‐commitment‐dependent base‐stock policy. We also provide a simpler proof of the optimality of the dual base‐stock policy. We then study the nonzero setup cost case and prove a new result, that the optimal solution is an unsold‐commitment‐dependent (sS) policy. We further propose two heuristic policies, which numerical tests show to perform very well. We also discuss two extensions to show the generality of our method's effectiveness. Finally, we use our results to examine the effect of different contract terms such as duration, lead time, and commitment on buyer's cost. We also compare total supply chain profits under periodic commitment, MTC, and no commitment.  相似文献   

12.
This article considers the joint development of the optimal pricing and ordering policies of a profit‐maximizing retailer, faced with (i) a manufacturer trade incentive in the form of a price discount for itself or a rebate directly to the end customer; (ii) a stochastic consumer demand dependent upon the magnitude of the selling price and of the trade incentive, that is contrasted with a riskless demand, which is the expected value of the stochastic demand; and (iii) a single‐period newsvendor‐type framework. Additional analysis includes the development of equal profit policies in either form of trade incentive, an assessment of the conditions under which a one‐dollar discount is more profitable than a one‐dollar rebate, and an evaluation of the impact upon the retailer‐expected profits of changes in either incentive or in the degree of demand uncertainty. A numerical example highlights the main features of the model. The analytical and numerical results clearly show that, as compared to the results for the riskless demand, dealing with uncertainty through a stochastic demand leads to (i) (lower) higher retail prices if additive (multiplicative) error, (ii) lower (higher) pass throughs if additive (multiplicative) error, (iii) higher claw backs in both error structures wherever applicable, and (iv) higher rebates to achieve equivalent profits in both error structures.  相似文献   

13.
We study the scheduling of multiple tasks under varying processing costs and derive a priority rule for optimal scheduling policies. Each task has a due date, and a non‐completion penalty cost is incurred if the task is not completely processed before its due date. We assume that the task arrival process is stochastic and the processing rate is capacitated. Our work is motivated by both traditional and emerging application domains, such as construction industry and freelance consulting industry. We establish the optimality of Shorter Slack time and Longer remaining Processing time (SSLP) principle that determines the priority among active tasks. Based on the derived structural properties, we also propose an effective cost‐balancing heuristic policy and demonstrate the efficacy of the proposed policy through extensive numerical experiments. We believe our results provide operators/managers valuable insights on how to devise effective service scheduling policies under varying costs.  相似文献   

14.
Motivated by the asset recovery process at IBM, we analyze the optimal disposition decision for product returns in electronic products industries. Returns may be either remanufactured for reselling or dismantled for spare parts. Reselling a remanufactured unit typically yields higher unit margins. However, demand is uncertain. A common policy in many firms is to rank disposition alternatives by unit margins. We propose a profit‐maximization approach that considers demand uncertainty. We develop single period and multiperiod stochastic optimization models for the disposition problem. Analyzing these models, we show that the optimal allocation balances expected marginal profits across the disposition alternatives. A detailed numerical study reveals that our approach to the disposition problem outperforms the current practice of focusing exclusively on high‐margin options, and we identify conditions under which this improvement is the highest. In addition, we show that a simple myopic heuristic in the multiperiod problem performs well.  相似文献   

15.
We study how an updated demand forecast affects a manufacturer's choice in ordering raw materials. With demand forecast updates, we develop a model where raw materials are ordered from two suppliers—one fast but expensive and the other cheap but slow—and further provide an explicit solution to the resulting dynamic optimization problem. Under some mild conditions, we demonstrate that the cost function is convex and twice‐differentiable with respect to order quantity. With this model, we are able to evaluate the benefit of demand information updating which leads to the identification of directions for further improvement. We further demonstrate that the model applies to multiple‐period problems provided that some demand regularity conditions are satisfied. Data collected from a manufacturer support the structure and conclusion of the model. Although the model is described in the context of in‐bound logistics, it can be applied to production and out‐bound logistics decisions as well.  相似文献   

16.
We investigate retailers’ dynamic pricing decisions in a stylized two‐period setting with possible supply constraints and demand from both myopic and strategic consumers. We present an analytical model and then test its predictions in a behavioral experiment in which human subjects played the role of pricing managers. We find that the fraction of strategic consumers in the market systematically moderates the optimal pricing structure. When this fraction exceeds a certain threshold, the retailer offers relatively small late season markdowns to discourage strategic consumers from waiting and to incentivize them to buy during the early season; otherwise, the retailer offers relatively large markdowns to divert all strategic consumers to the late season, where the majority of revenue is made. Our model analyses suggest that the latter policy is optimal under fairly broad conditions. Our experiment shows that after some significant learning, aggregate behavior is able to approximate the key qualitative predictions from our model analysis, with one notable deviation: in the presence of a mixture of myopic and strategic consumers, subjects act somewhat myopically – they underprice and oversell in the main selling season, which significantly limits their ability to generate revenue in the markdown season.  相似文献   

17.
本文在文献[1]的研究基础上,通过深入剖析FKO模型,运用动态规划方法,探讨了呈现特殊需求性质的库存竞争性产品在VMI环境下的多期动态补货策略,以及传统库存管理中不加考虑的库存空间优化问题。本文一方面是对FKO模型的补充与扩展,同时也证实了对于在特定的VMI补货环境下采用多期库存盘查模式的供应商来说,封顶式的补货策略是最优的,并且其关于最优补货水平的多期决策都是无远见的。因此收益分享合同下的单期最优库存水平可以作为设定最优货架展示空间的依据。  相似文献   

18.
Small‐to‐medium‐sized enterprises (SMEs), including many startup firms, need to manage interrelated flows of cash and inventories of goods. In this study, we model a firm that can finance its inventory (ordered or manufactured) with loans in order to meet random demand which in general may not be time stationary. The firm earns interest on its cash on hand and pays interest on its debt. The objective is to maximize the expected value of the firm's capital at the end of a finite planning horizon. The firm's state at the beginning of each period is characterized by the inventory level and the capital level measured in units of the product, whose sum represents the “net worth” of the firm. Our study shows that the optimal ordering policy is characterized by a pair of threshold parameters as follows. (i) If the net worth is less than the lower threshold, then the firm employs a base stock order up to the lower threshold. (ii) If the net worth is between the two thresholds, then the firm orders exactly as many units as it can afford, without borrowing. (iii) If the net worth is above the upper threshold, then the firm employs a base stock order up to the upper threshold. Further, upper and lower bounds for the threshold values are developed using two simple‐to‐compute myopic ordering policies which yield lower bounds for the value function. We also derive an upper bound for the value function by considering a sell‐back policy. Subsequently, it is shown that policies of similar structure are optimal when the loan and deposit interest rates are piecewise linear functions, when there is a maximal loan limit and when unsatisfied demand is backordered. Finally, further managerial insights are provided with extensive numerical studies.  相似文献   

19.
We consider a centralized distribution network with multiple retailers who receive replenishment inventory to satisfy customer demand of the local markets. The operational flexibility of the network is defined as the opportunity that one retailer's excess inventory can be transferred to satisfy other retailers’ unmet customer demand due to stock-outs. A general modeling framework is developed to optimize retailers’ order quantities under any possible flexibility level of a stylized two-stage distribution network. We apply the framework to formulate and solve the transshipment problem of a distribution network with three retailers. Six typical flexibility levels are investigated to make the comparison study on the firm's profit performance under three ordering quantity policies: average demand, newsvendor order quantity, and optimal order quantity. We find that the operational flexibility and system optimization are complements to the firm's performance. The ordering policy with newsvendor ordering quantity can perform fairly well with moderate flexibility level when compared with the optimized ordering policy with full flexibility.  相似文献   

20.
Inspired by recent empirical work on inventory record inaccuracy, we consider a periodic review inventory system with imperfect inventory records and unobserved lost sales. Record inaccuracies are assumed to arrive via an error process that perturbs physical inventory but is unobserved by the inventory manager. The inventory manager maintains a probability distribution around the physical inventory level that he updates based on sales observations using Bayes Theorem. The focus of this study is on understanding, approximating, and evaluating optimal forward‐looking replenishment in this environment. By analyzing one‐ and two‐period versions of the problem, we demonstrate several mechanisms by which the error process and associated record inaccuracy can impact optimal replenishment. Record inaccuracy generally brings an incentive for a myopic manager to increase stock to buffer the added uncertainty. On the other hand, a forward‐looking manager will stock less than a myopic manager, in part to improve information content for future decisions. Using an approximate partially observed dynamic programming policy and associated bound, we numerically corroborate our analytical findings and measure the effectiveness of an intelligent myopic heuristic. We find that the myopic heuristic is likely sufficiently good in practical settings targeting high service levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号