首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper derives the relative efficiency of a parameter for the M/G/1 queueing system based on reduced and full likelihood functions. Monte Carlo simulations were carried out to study the finite sample properties for estimating the parameters of a M/G/1 queueing system. The simulation runs were conducted using various traftic intensities with increaseing sample sizes. The simulation results indicate that the loss in efficiency is quite small due to the use of a reduced likelihood function approach for estimating the parameter instead of the full likelihood, even for a moderate sample size of 50  相似文献   

2.
Summary.  There are models for which the evaluation of the likelihood is infeasible in practice. For these models the Metropolis–Hastings acceptance probability cannot be easily computed. This is the case, for instance, when only departure times from a G / G /1 queue are observed and inference on the arrival and service distributions are required. Indirect inference is a method to estimate a parameter θ in models whose likelihood function does not have an analytical closed form, but from which random samples can be drawn for fixed values of θ . First an auxiliary model is chosen whose parameter β can be directly estimated. Next, the parameters in the auxiliary model are estimated for the original data, leading to an estimate     . The parameter β is also estimated by using several sampled data sets, simulated from the original model for different values of the original parameter θ . Finally, the parameter θ which leads to the best match to     is chosen as the indirect inference estimate. We analyse which properties an auxiliary model should have to give satisfactory indirect inference. We look at the situation where the data are summarized in a vector statistic T , and the auxiliary model is chosen so that inference on β is drawn from T only. Under appropriate assumptions the asymptotic covariance matrix of the indirect estimators is proportional to the asymptotic covariance matrix of T and componentwise inversely proportional to the square of the derivative, with respect to θ , of the expected value of T . We discuss how these results can be used in selecting good estimating functions. We apply our findings to the queuing problem.  相似文献   

3.
Abstract

This paper deals with Geo/G/1 queues with a repairable server. The server is subject to failure due to a disaster arrival, which can occur while the server is turned on and not only when it is busy. At a failure instant, the server is turned off and its repair process begins. During the repair process, two models are considered. For both models, we present the PGF and the expected number of clients in the system in the steady state.  相似文献   

4.
This article develops a computational algorithm for the loss probability in the stationary M/G/1 queue with impatient customers whose impatience times follow a phase-type distribution (M/G/1+PH). The algorithm outputs the loss probability, along with an upper-bound of its numerical error due to truncation, and it is readily applicable to the M/D/1+PH, M/PH/1+PH, and M/Pareto/1+PH queues.  相似文献   

5.
6.
In this article, we exploit the Bayesian inference and prediction for an M/G/1 queuing model with optional second re-service. In this model, a service unit attends customers arriving following a Poisson process and demanding service according to a general distribution and some of customers need to re-service with probability “p”. First, we introduce a mixture of truncated Normal distributions on interval (? ∞, 0) to approximate the service and re-service time densities. Then, given observations of the system, we propose a Bayesian procedure based on birth-death MCMC methodology to estimate some performance measures. Finally, we apply the theories in practice by providing a numerical example based on real data which have been obtained from a hospital.  相似文献   

7.
In this article, Bayesian inference for the half-normal and half-t distributions using uninformative priors is considered. It is shown that exact Bayesian inference can be undertaken for the half-normal distribution without the need for Gibbs sampling. Simulation is then used to compare the sampling properties of Bayesian point and interval estimators with those of their maximum likelihood based counterparts. Inference for the half-t distribution based on the use of Gibbs sampling is outlined, and an approach to model comparison based on the use of Bayes factors is discussed. The fitting of the half-normal and half-t models is illustrated using real data on the body fat measurements of elite athletes.  相似文献   

8.
Semiparametric Bayesian models are nowadays a popular tool in event history analysis. An important area of research concerns the investigation of frequentist properties of posterior inference. In this paper, we propose novel semiparametric Bayesian models for the analysis of competing risks data and investigate the Bernstein–von Mises theorem for differentiable functionals of model parameters. The model is specified by expressing the cause-specific hazard as the product of the conditional probability of a failure type and the overall hazard rate. We take the conditional probability as a smooth function of time and leave the cumulative overall hazard unspecified. A prior distribution is defined on the joint parameter space, which includes a beta process prior for the cumulative overall hazard. We first develop the large-sample properties of maximum likelihood estimators by giving simple sufficient conditions for them to hold. Then, we show that, under the chosen priors, the posterior distribution for any differentiable functional of interest is asymptotically equivalent to the sampling distribution derived from maximum likelihood estimation. A simulation study is provided to illustrate the coverage properties of credible intervals on cumulative incidence functions.  相似文献   

9.
The authors show how saddlepoint techniques lead to highly accurate approximations for Bayesian predictive densities and cumulative distribution functions in stochastic model settings where the prior is tractable, but not necessarily the likelihood or the predictand distribution. They consider more specifically models involving predictions associated with waiting times for semi‐Markov processes whose distributions are indexed by an unknown parameter θ. Bayesian prediction for such processes when they are not stationary is also addressed and the inverse‐Gaussian based saddlepoint approximation of Wood, Booth & Butler (1993) is shown to accurately deal with the nonstationarity whereas the normal‐based Lugannani & Rice (1980) approximation cannot, Their methods are illustrated by predicting various waiting times associated with M/M/q and M/G/1 queues. They also discuss modifications to the matrix renewal theory needed for computing the moment generating functions that are used in the saddlepoint methods.  相似文献   

10.
We consider the combination of path sampling and perfect simulation in the context of both likelihood inference and non‐parametric Bayesian inference for pairwise interaction point processes. Several empirical results based on simulations and analysis of a data set are presented, and the merits of using perfect simulation are discussed.  相似文献   

11.
We propose a weighted empirical likelihood approach to inference with multiple samples, including stratified sampling, the estimation of a common mean using several independent and non-homogeneous samples and inference on a particular population using other related samples. The weighting scheme and the basic result are motivated and established under stratified sampling. We show that the proposed method can ideally be applied to the common mean problem and problems with related samples. The proposed weighted approach not only provides a unified framework for inference with multiple samples, including two-sample problems, but also facilitates asymptotic derivations and computational methods. A bootstrap procedure is also proposed in conjunction with the weighted approach to provide better coverage probabilities for the weighted empirical likelihood ratio confidence intervals. Simulation studies show that the weighted empirical likelihood confidence intervals perform better than existing ones.  相似文献   

12.
We present a maximum likelihood estimation procedure for the multivariate frailty model. The estimation is based on a Monte Carlo EM algorithm. The expectation step is approximated by averaging over random samples drawn from the posterior distribution of the frailties using rejection sampling. The maximization step reduces to a standard partial likelihood maximization. We also propose a simple rule based on the relative change in the parameter estimates to decide on sample size in each iteration and a stopping time for the algorithm. An important new concept is acquiring absolute convergence of the algorithm through sample size determination and an efficient sampling technique. The method is illustrated using a rat carcinogenesis dataset and data on vase lifetimes of cut roses. The estimation results are compared with approximate inference based on penalized partial likelihood using these two examples. Unlike the penalized partial likelihood estimation, the proposed full maximum likelihood estimation method accounts for all the uncertainty while estimating standard errors for the parameters.  相似文献   

13.
In this paper, we consider fiducial inference for the unknown parameters of the Birnbaum-Saunders distribution. Two generalized fiducial distributions of the parameters are obtained. One is based on the inverse of the structural equation, and the fiducial estimates of the parameters are obtained by a simulation method. The other is based on the method of [Hannig J. Generalized fiducial inference via discretization. Stat. Sinica. 2013;23:489–514], then we use adaptive rejection Metropolis sampling to get the fiducial estimates. We compare the fiducial estimates with the maximum likelihood estimates and Bayesian estimates by simulations. Two real data sets are analysed for illustration.  相似文献   

14.
Likelihood‐based inference with missing data is challenging because the observed log likelihood is often an (intractable) integration over the missing data distribution, which also depends on the unknown parameter. Approximating the integral by Monte Carlo sampling does not necessarily lead to a valid likelihood over the entire parameter space because the Monte Carlo samples are generated from a distribution with a fixed parameter value. We consider approximating the observed log likelihood based on importance sampling. In the proposed method, the dependency of the integral on the parameter is properly reflected through fractional weights. We discuss constructing a confidence interval using the profile likelihood ratio test. A Newton–Raphson algorithm is employed to find the interval end points. Two limited simulation studies show the advantage of the Wilks inference over the Wald inference in terms of power, parameter space conformity and computational efficiency. A real data example on salamander mating shows that our method also works well with high‐dimensional missing data.  相似文献   

15.
《随机性模型》2013,29(4):415-437
Abstract

In this paper, we study the total workload process and waiting times in a queueing system with multiple types of customers and a first-come-first-served service discipline. An M/G/1 type Markov chain, which is closely related to the total workload in the queueing system, is constructed. A method is developed for computing the steady state distribution of that Markov chain. Using that steady state distribution, the distributions of total workload, batch waiting times, and waiting times of individual types of customers are obtained. Compared to the GI/M/1 and QBD approaches for waiting times and sojourn times in discrete time queues, the dimension of the matrix blocks involved in the M/G/1 approach can be significantly smaller.  相似文献   

16.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

17.
Motivated by applications in call center management, we propose a framework based on empirical process techniques for inference about waiting time and patience distributions in multiserver queues with abandonment. The framework rigorises heuristics based on survival analysis of independent and identically distributed observations by allowing correlated waiting times. Assuming a regenerative structure of offered waiting times, we establish asymptotic properties of estimators of limiting distribution functions and derived functionals. We discuss construction of bootstrap confidence intervals and statistical tests, including a simple bootstrap two-sample test for comparing patience distributions. A small simulation study and a real data example are presented.  相似文献   

18.
Queues with Markovian arrival and service processes, i.e., MAP/MAP/1 queues, have been useful in the analysis of computer and communication systems and different representations for their stationary sojourn time and queue length distribution have been derived. More specifically, the class of MAP/MAP/1 queues lies at the intersection of the class of QBD queues and the class of semi-Markovian queues. While QBD queues have a matrix exponential representation for their queue length and sojourn time distribution of order N and N2, respectively, where N is the size of the background continuous time Markov chain, the reverse is true for a semi-Markovian queue. As the class of MAP/MAP/1 queues lies at the intersection, both the queue length and sojourn time distribution of a MAP/MAP/1 queue has an order N matrix exponential representation. The aim of this article is to understand why the order N2 distributions of the sojourn time of a QBD queue and the queue length of a semi-Markovian queue can be reduced to an order N distribution in the specific case of a MAP/MAP/1 queue. We show that the key observation exists in establishing the commutativity of some fundamental matrices involved in the analysis of the MAP/MAP/1 queue.  相似文献   

19.
《随机性模型》2013,29(2-3):821-846
Abstract

We propose a family of finite approximations for the departure process of a BMAP/MAP/1 queue. The departure process approximations are derived via an exact aggregate solution technique (called ETAQA) applied to M/G/1-type Markov processes. The proposed approximations are indexed by a parameter n(n > 1), which determines the size of the output model as n + 1 block levels of the M/G/1-type process. This output approximation preserves exactly the marginal distribution of the true departure process and the lag correlations of the interdeparture times up to lag n ? 2. Experimental results support the applicability of the proposed approximation in traffic-based decomposition of queueing networks.  相似文献   

20.
In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号