首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In application areas like bioinformatics, multivariate distributions on angles are encountered which show significant clustering. One approach to statistical modeling of such situations is to use mixtures of unimodal distributions. In the literature (Mardia et al., 2012 Mardia , K. V. , Kent , J. T. , Zhang , Z. , Taylor , C. , Hamelryck , T. ( 2012 ). Mixtures of concentrated multivariate sine distributions with applications to bioinformatics . J. Appl. Stat. 39 : 24752492 .[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]), the multivariate von Mises distribution, also known as the multivariate sine distribution, has been suggested for components of such models, but work in the area has been hampered by the fact that no good criteria for the von Mises distribution to be unimodal were available. In this article we study the question about when a multivariate von Mises distribution is unimodal. We give sufficient criteria for this to be the case and show examples of distributions with multiple modes when these criteria are violated. In addition, we propose a method to generate samples from the von Mises distribution in the case of high concentration.  相似文献   

2.
During the past .20 years, there has been growing recognition of the consequences of the randomness of crop yields and prices for farm management and agricultural policy decisions. Concomitantly, researchers have recognized the possibility and implications of the non-normality of yields and prices. This study demonstrates a method for estimating multivariate non-normality in crop yields and prices over time, using the inverse hyperbolic sine transformation of corn, soya bean and wheat yields. The resulting estimates are used to simulate a multivariate distribution of crop yields.  相似文献   

3.
4.
Motivated by problems of modelling torsional angles in molecules, Singh, Hnizdo & Demchuk (2002) proposed a bivariate circular model which is a natural torus analogue of the bivariate normal distribution and a natural extension of the univariate von Mises distribution to the bivariate case. The authors present here a multivariate extension of the bivariate model of Singh, Hnizdo & Demchuk (2002). They study the conditional distributions and investigate the shapes of marginal distributions for a special case. The methods of moments and pseudo‐likelihood are considered for the estimation of parameters of the new distribution. The authors investigate the efficiency of the pseudo‐likelihood approach in three dimensions. They illustrate their methods with protein data of conformational angles  相似文献   

5.
Data arising from a randomized double-masked clinical trial for multiple sclerosis have provided particularly variable longitudinal repeated measurements responses. Specific models for such data, other than those based on the multivariate normal distribution, would be a valuable addition to the applied statistician's toolbox. A useful family of multivariate distributions can be generated by substituting the integrated intensity of one distribution into a second (outer) distribution. The parameters in the second distribution are then used to create a dependence structure among observations on a unit. These may either be a form of serial dependence for longitudinal data or of uniform dependence within clusters. These are respectively analogous to the Kalman filter of state space models and to copulas, but they have the major advantage that they do not require any explicit integration. One useful outer distribution for constructing such multivariate distributions is the Pareto distribution. Certain special models based on it have previously been used in event history analysis, but those considered here have much wider application.  相似文献   

6.
A special case of the multivariate exponential power distribution is considered as a multivariate extension of the univariate symmetric Laplace distribution. In this paper, we focus on this multivariate symmetric Laplace distribution, and extend it to a multivariate skew distribution. We call this skew extension of the multivariate symmetric Laplace distribution the “multivariate skew Laplace (MSL) distribution” to distinguish between the asymmetric multivariate Laplace distribution proposed by Kozubowski and Podgórski (Comput Stat 15:531–540, 2000a) Kotz et al. (The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance, Chap. 6. Birkhäuser, Boston, 2001) and Kotz et al. (An asymmetric multivariate Laplace Distribution, Working paper, 2003). One of the advantages of (MSL) distribution is that it can handle both heavy tails and skewness and that it has a simple form compared to other multivariate skew distributions. Some fundamental properties of the multivariate skew Laplace distribution are discussed. A simple EM-based maximum likelihood estimation procedure to estimate the parameters of the multivariate skew Laplace distribution is given. Some examples are provided to demonstrate the modeling strength of the skew Laplace distribution.  相似文献   

7.
We propose here a robust multivariate extension of the bivariate Birnbaum–Saunders (BS) distribution derived by Kundu et al. [Bivariate Birnbaum–Saunders distribution and associated inference. J Multivariate Anal. 2010;101:113–125], based on scale mixtures of normal (SMN) distributions that are used for modelling symmetric data. This resulting multivariate BS-type distribution is an absolutely continuous distribution whose marginal and conditional distributions are of BS-type distribution of Balakrishnan et al. [Estimation in the Birnbaum–Saunders distribution based on scalemixture of normals and the EM algorithm. Stat Oper Res Trans. 2009;33:171–192]. Due to the complexity of the likelihood function, parameter estimation by direct maximization is very difficult to achieve. For this reason, we exploit the nice hierarchical representation of the proposed distribution to propose a fast and accurate EM algorithm for computing the maximum likelihood (ML) estimates of the model parameters. We then evaluate the finite-sample performance of the developed EM algorithm and the asymptotic properties of the ML estimates through empirical experiments. Finally, we illustrate the obtained results with a real data and display the robustness feature of the estimation procedure developed here.  相似文献   

8.
A Composite Likelihood Approach to Multivariate Survival Data   总被引:2,自引:1,他引:1  
This paper is about the statistical analysis of multivariate survival data. We discuss the additive and multiplicative frailty models which have been the most popular models for multivariate survival data. As an alternative to the additive and multiplicative frailty models, we propose basing inference on a composite likelihood function that only requires modelling of the marginal distribution of pairs of failure times. Each marginal distribution of a pair of failure times is here assumed to follow a shared frailty model. The method is illustrated with a real-life example.  相似文献   

9.
In this article, we explore a new two-parameter family of distribution, which is derived by suitably replacing the exponential term in the Gompertz distribution with a hyperbolic sine term. The resulting new family of distribution is referred to as the Gompertz-sinh distribution, and it possesses a thicker and longer lower tail than the Gompertz family, which is often used to model highly negatively skewed data. Moreover, we introduce a useful generalization of this model by adding a second shape parameter to accommodate a variety of density shapes as well as nondecreasing hazard shapes. The flexibility and better fitness of the new family, as well as its generalization, is demonstrated by providing well-known examples that involve complete, group, and censored data.  相似文献   

10.
Abstract

We propose a new multivariate extension of the inverse Gaussian distribution derived from a certain multivariate inverse relationship. First we define a multivariate extension of the inverse relationship between two sets of multivariate distributions, then define a reduced inverse relationship between two multivariate distributions. We derive the multivariate continuous distribution that has the reduced multivariate inverse relationship with a multivariate normal distribution and call it a multivariate inverse Gaussian distribution. This distribution is also characterized as the distribution of the location of a multivariate Brownian motion at some stopping time. The marginal distribution in one direction is the inverse Gaussian distribution, and the conditional distribution in the space perpendicular to this direction is a multivariate normal distribution. Mean, variance, and higher order cumulants are derived from the multivariate inverse relationship with a multivariate normal distribution. Other properties such as reproductivity and infinite divisibility are also given.  相似文献   

11.
The wrapped skew-normal distribution is proposed as a model for circular data. Basic results for the distribution are established and estimation for a circular parametrisation of it considered. Procedures based on the sample second central sine moment for testing for departures from three important limiting cases of the distribution are described. The model and some new inferential techniques are applied to directional data from a study into bird migration.  相似文献   

12.
In this paper, we propose novel methods of quantifying expert opinion about prior distributions for multinomial models. Two different multivariate priors are elicited using median and quartile assessments of the multinomial probabilities. First, we start by eliciting a univariate beta distribution for the probability of each category. Then we elicit the hyperparameters of the Dirichlet distribution, as a tractable conjugate prior, from those of the univariate betas through various forms of reconciliation using least-squares techniques. However, a multivariate copula function will give a more flexible correlation structure between multinomial parameters if it is used as their multivariate prior distribution. So, second, we use beta marginal distributions to construct a Gaussian copula as a multivariate normal distribution function that binds these marginals and expresses the dependence structure between them. The proposed method elicits a positive-definite correlation matrix of this Gaussian copula. The two proposed methods are designed to be used through interactive graphical software written in Java.  相似文献   

13.
Dependent multivariate count data occur in several research studies. These data can be modelled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula-based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.  相似文献   

14.
To detect the dependence on the covariates in the lower and upper tails of the response distribution, regression quantiles are very useful tools in linear model problems with univariate response. We consider here a notion of regression quantiles for problems with multivariate responses. The approach is based on minimizing a loss function equivalent to that in the case of univariate response. To construct an affine equivariant notion of multivariate regression quantiles, we have considered a transformation retransformation procedure based on ‘data-driven coordinate systems’. We indicate some algorithm to compute the proposed estimates and establish asymptotic normality for them. We also, suggest an adaptive procedure to select the optimal data-driven coordinate system. We discuss the performance of our estimates with the help of a finite sample simulation study and to illustrate our methodology, we analyzed an interesting data-set on blood pressures of a group of women and another one on the dependence of sales performances on creative test scores.  相似文献   

15.

A basic graphical approach for checking normality is the Q - Q plot that compares sample quantiles against the population quantiles. In the univariate analysis, the probability plot correlation coefficient test for normality has been studied extensively. We consider testing the multivariate normality by using the correlation coefficient of the Q - Q plot. When multivariate normality holds, the sample squared distance should follow a chi-square distribution for large samples. The plot should resemble a straight line. A correlation coefficient test can be constructed by using the pairs of points in the probability plot. When the correlation coefficient test does not reject the null hypothesis, the sample data may come from a multivariate normal distribution or some other distributions. So, we use the following two steps to test multivariate normality. First, we check the multivariate normality by using the probability plot correction coefficient test. If the test does not reject the null hypothesis, then we test symmetry of the distribution and determine whether multivariate normality holds. This test procedure is called the combination test. The size and power of this test are studied, and it is found that the combination test, in general, is more powerful than other tests for multivariate normality.  相似文献   

16.
For the data from multivariate t distributions, it is very hard to make an influence analysis based on the probability density function since its expression is intractable. In this paper, we present a technique for influence analysis based on the mixture distribution and EM algorithm. In fact, the multivariate t distribution can be considered as a particular Gaussian mixture by introducing the weights from the Gamma distribution. We treat the weights as the missing data and develop the influence analysis for the data from multivariate t distributions based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. Several case-deletion measures are proposed for detecting influential observations from multivariate t distributions. Two numerical examples are given to illustrate our methodology.  相似文献   

17.
ABSTRACT

In this paper, we introduce a new class of (probability) distributions, based on a cosine-sine transformation, obtained by compounding a baseline distribution with cosine and sine functions. Some of its properties are explored. A special focus is given to a particular cosine-sine transformation using the exponential distribution as baseline. Estimations of parameters of a particular cosine-sine exponential distribution are performed via the maximum likelihood estimation method. A simulation study investigates the performances of these estimates. Applications are given for four real data sets, showing a better fit in comparison to some existing distributions based on some goodness-of-fit tests.  相似文献   

18.
Multivariate control charts are powerful and simple visual tools for monitoring the quality of a process. This multivariate monitoring is carried out by considering simultaneously several correlated quality characteristics and by determining whether these characteristics are in control or out of control. In this paper, we propose a robust methodology using multivariate quality control charts for subgroups based on generalized Birnbaum–Saunders distributions and an adapted Hotelling statistic. This methodology is constructed for Phases I and II of control charts. We estimate the corresponding parameters with the maximum likelihood method and use parametric bootstrapping to obtain the distribution of the adapted Hotelling statistic. In addition, we consider the Mahalanobis distance to detect multivariate outliers and use it to assess the adequacy of the distributional assumption. A Monte Carlo simulation study is conducted to evaluate the proposed methodology and to compare it with a standard methodology. This study reports the good performance of our methodology. An illustration with real-world air quality data of Santiago, Chile, is provided. This illustration shows that the methodology is useful for alerting early episodes of extreme air pollution, thus preventing adverse effects on human health.  相似文献   

19.
In this paper, we obtain an adjusted version of the likelihood ratio (LR) test for errors-in-variables multivariate linear regression models. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal distribution as a special case. We derive a modified LR statistic that follows a chi-squared distribution with a high degree of accuracy. Our results generalize those in Melo and Ferrari (Advances in Statistical Analysis, 2010, 94, pp. 75–87) by allowing the parameter of interest to be vector-valued in the multivariate errors-in-variables model. We report a simulation study which shows that the proposed test displays superior finite sample behavior relative to the standard LR test.  相似文献   

20.
The Hotelling's T2statistic has been used in constructing a multivariate control chart for individual observations. In Phase II operations, the distribution of the T2statistic is related to the F distribution provided the underlying population is multivariate normal. Thus, the upper control limit (UCL) is proportional to a percentile of the F distribution. However, if the process data show sufficient evidence of a marked departure from multivariate normality, the UCL based on the F distribution may be very inaccurate. In such situations, it will usually be helpful to determine the UCL based on the percentile of the estimated distribution for T2. In this paper, we use a kernel smoothing technique to estimate the distribution of the T2statistic as well as of the UCL of the T2chart, when the process data are taken from a multivariate non-normal distribution. Through simulations, we examine the sample size requirement and the in-control average run length of the T2control chart for sample observations taken from a multivariate exponential distribution. The paper focuses on the Phase II situation with individual observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号