首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bayesian semiparametric inference is considered for a loglinear model. This model consists of a parametric component for the regression coefficients and a nonparametric component for the unknown error distribution. Bayesian analysis is studied for the case of a parametric prior on the regression coefficients and a mixture-of-Dirichlet-processes prior on the unknown error distribution. A Markov-chain Monte Carlo (MCMC) method is developed to compute the features of the posterior distribution. A model selection method for obtaining a more parsimonious set of predictors is studied. The method adds indicator variables to the regression equation. The set of indicator variables represents all the possible subsets to be considered. A MCMC method is developed to search stochastically for the best subset. These procedures are applied to two examples, one with censored data.  相似文献   

2.

Cluster point processes comprise a class of models that have been used for a wide range of applications. While several models have been studied for the probability density function of the offspring displacements and the parent point process, there are few examples of non-Poisson distributed cluster sizes. In this paper, we introduce a generalization of the Thomas process, which allows for the cluster sizes to have a variance that is greater or less than the expected value. We refer to this as the cluster sizes being over- and under-dispersed, respectively. To fit the model, we introduce minimum contrast methods and a Bayesian MCMC algorithm. These are evaluated in a simulation study. It is found that using the Bayesian MCMC method, we are in most cases able to detect over- and under-dispersion in the cluster sizes. We use the MCMC method to fit the model to nerve fiber data, and contrast the results to those of a fitted Thomas process.

  相似文献   

3.
Abstract. We investigate simulation methodology for Bayesian inference in Lévy‐driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user‐set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model.  相似文献   

4.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

5.
We demonstrate the use of our R package, gammSlice, for Bayesian fitting and inference in generalised additive mixed model analysis. This class of models includes generalised linear mixed models and generalised additive models as special cases. Accurate Bayesian inference is achievable via sufficiently large Markov chain Monte Carlo (MCMC) samples. Slice sampling is a key component of the MCMC scheme. Comparisons with existing generalised additive mixed model software shows that gammSlice offers improved inferential accuracy, albeit at the cost of longer computational time.  相似文献   

6.
7.
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real data set.  相似文献   

8.
For many stochastic models, it is difficult to make inference about the model parameters because it is impossible to write down a tractable likelihood given the observed data. A common solution is data augmentation in a Markov chain Monte Carlo (MCMC) framework. However, there are statistical problems where this approach has proved infeasible but where simulation from the model is straightforward leading to the popularity of the approximate Bayesian computation algorithm. We introduce a forward simulation MCMC (fsMCMC) algorithm, which is primarily based upon simulation from the model. The fsMCMC algorithm formulates the simulation of the process explicitly as a data augmentation problem. By exploiting non‐centred parameterizations, an efficient MCMC updating schema for the parameters and augmented data is introduced, whilst maintaining straightforward simulation from the model. The fsMCMC algorithm is successfully applied to two distinct epidemic models including a birth–death–mutation model that has only previously been analysed using approximate Bayesian computation methods.  相似文献   

9.
This paper presents a comprehensive review and comparison of five computational methods for Bayesian model selection, based on MCMC simulations from posterior model parameter distributions. We apply these methods to a well-known and important class of models in financial time series analysis, namely GARCH and GARCH-t models for conditional return distributions (assuming normal and t-distributions). We compare their performance with the more common maximum likelihood-based model selection for simulated and real market data. All five MCMC methods proved reliable in the simulation study, although differing in their computational demands. Results on simulated data also show that for large degrees of freedom (where the t-distribution becomes more similar to a normal one), Bayesian model selection results in better decisions in favor of the true model than maximum likelihood. Results on market data show the instability of the harmonic mean estimator and reliability of the advanced model selection methods.  相似文献   

10.
One form of data collected in the study of infectious diseases is on the transmission of a disease within households. We consider a model which allows the rate of disease transmission to vary between households. A Bayesian hierarchical approach to fitting the model is proposed and is implemented by the Metropolis–Hastings algorithm, a standard Markov chain Monte Carlo (MCMC) method. Results are presented for both simulated epidemic chain data and the Providence measles data, illustrating the potential that MCMC methods have to dealing with heterogeneity in infectious disease transmission.  相似文献   

11.
Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudo-likelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the pseudo-likelihood approximation in our analysis of real and synthetic datasets.  相似文献   

12.
In this article, we apply the Bayesian approach to the linear mixed effect models with autoregressive(p) random errors under mixture priors obtained with the Markov chain Monte Carlo (MCMC) method. The mixture structure of a point mass and continuous distribution can help to select the variables in fixed and random effects models from the posterior sample generated using the MCMC method. Bayesian prediction of future observations is also one of the major concerns. To get the best model, we consider the commonly used highest posterior probability model and the median posterior probability model. As a result, both criteria tend to be needed to choose the best model from the entire simulation study. In terms of predictive accuracy, a real example confirms that the proposed method provides accurate results.  相似文献   

13.
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample from the posterior, which contains information about the unobserved Voronoi tessellation and the model parameters. A major element of the MCMC algorithm is the reconstruction of the Voronoi tessellation after a proposed local change of the tessellation. A simulation study and examples of applications from biology (animal territories) and material science (alumina grain structure) are presented.  相似文献   

14.
This article designs a Sequential Monte Carlo (SMC) algorithm for estimation of Bayesian semi-parametric Stochastic Volatility model for financial data. In particular, it makes use of one of the most recent particle filters called Particle Learning (PL). SMC methods are especially well suited for state-space models and can be seen as a cost-efficient alternative to Markov Chain Monte Carlo (MCMC), since they allow for online type inference. The posterior distributions are updated as new data is observed, which is exceedingly costly using MCMC. Also, PL allows for consistent online model comparison using sequential predictive log Bayes factors. A simulated data is used in order to compare the posterior outputs for the PL and MCMC schemes, which are shown to be almost identical. Finally, a short real data application is included.  相似文献   

15.
Markov chain Monte Carlo (MCMC) sampling is a numerically intensive simulation technique which has greatly improved the practicality of Bayesian inference and prediction. However, MCMC sampling is too slow to be of practical use in problems involving a large number of posterior (target) distributions, as in dynamic modelling and predictive model selection. Alternative simulation techniques for tracking moving target distributions, known as particle filters, which combine importance sampling, importance resampling and MCMC sampling, tend to suffer from a progressive degeneration as the target sequence evolves. We propose a new technique, based on these same simulation methodologies, which does not suffer from this progressive degeneration.  相似文献   

16.
Approximate Bayesian Inference for Survival Models   总被引:1,自引:0,他引:1  
Abstract. Bayesian analysis of time‐to‐event data, usually called survival analysis, has received increasing attention in the last years. In Cox‐type models it allows to use information from the full likelihood instead of from a partial likelihood, so that the baseline hazard function and the model parameters can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inference for any parameter or predictive quantity of interest. On the other side, Bayesian inference often relies on Markov chain Monte Carlo (MCMC) techniques which, from the user point of view, may appear slow at delivering answers. In this article, we show how a new inferential tool named integrated nested Laplace approximations can be adapted and applied to many survival models making Bayesian analysis both fast and accurate without having to rely on MCMC‐based inference.  相似文献   

17.
We compare results for stochastic volatility models where the underlying volatility process having generalized inverse Gaussian (GIG) and tempered stable marginal laws. We use a continuous time stochastic volatility model where the volatility follows an Ornstein–Uhlenbeck stochastic differential equation driven by a Lévy process. A model for long-range dependence is also considered, its merit and practical relevance discussed. We find that the full GIG and a special case, the inverse gamma, marginal distributions accurately fit real data. Inference is carried out in a Bayesian framework, with computation using Markov chain Monte Carlo (MCMC). We develop an MCMC algorithm that can be used for a general marginal model.  相似文献   

18.
ABSTRACT

In this article, we propose a new distribution by mixing normal and Pareto distributions, and the new distribution provides an unusual hazard function. We model the mean and the variance with covariates for heterogeneity. Estimation of the parameters is obtained by the Bayesian method using Markov Chain Monte Carlo (MCMC) algorithms. Proposal distribution in MCMC is proposed with a defined working variable related to the observations. Through the simulation, the method shows a dependable performance of the model. We demonstrate through establishing model under a real dataset that the proposed model and method can be more suitable than the previous report.  相似文献   

19.
Abstract

This work deals with the problem of Bayesian estimation of the transition probabilities associated with multistate Markov chain. The model is based on the Jeffreys' noninformative prior. The Bayesian estimator is approximated by means of MCMC techniques. A numerical study by simulation is done in order to compare the Bayesian estimator with the maximum likelihood estimator.  相似文献   

20.
We consider Bayesian analysis of threshold autoregressive moving average model with exogenous inputs (TARMAX). In order to obtain the desired marginal posterior distributions of all parameters including the threshold value of the two-regime TARMAX model, we use two different Markov chain Monte Carlo (MCMC) methods to apply Gibbs sampler with Metropolis-Hastings algorithm. The first one is used to obtain iterative least squares estimates of the parameters. The second one includes two MCMC stages for estimate the desired marginal posterior distributions and the parameters. Simulation experiments and a real data example show support to our approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号