共查询到1条相似文献,搜索用时 0 毫秒
1.
We explore the performance accuracy of the linear and quadratic classifiers for high-dimensional higher-order data, assuming that the class conditional distributions are multivariate normal with locally doubly exchangeable covariance structure. We derive a two-stage procedure for estimating the covariance matrix: at the first stage, the Lasso-based structure learning is applied to sparsifying the block components within the covariance matrix. At the second stage, the maximum-likelihood estimators of all block-wise parameters are derived assuming the doubly exchangeable within block covariance structure and a Kronecker product structured mean vector. We also study the effect of the block size on the classification performance in the high-dimensional setting and derive a class of asymptotically equivalent block structure approximations, in a sense that the choice of the block size is asymptotically negligible. 相似文献