首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers quantile regression models using an asymmetric Laplace distribution from a Bayesian point of view. We develop a simple and efficient Gibbs sampling algorithm for fitting the quantile regression model based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the resulting Gibbs sampler can be accomplished by sampling from either normal or generalized inverse Gaussian distribution. We also discuss some possible extensions of our approach, including the incorporation of a scale parameter, the use of double exponential prior, and a Bayesian analysis of Tobit quantile regression. The proposed methods are illustrated by both simulated and real data.  相似文献   

2.
In this paper, we consider the finite mixture of quantile regression model from a Bayesian perspective by assuming the errors have the asymmetric Laplace distribution (ALD), and develop the Gibbs sampling algorithm to estimate various quantile conditional on covariate in different groups using the Normal-Exponential representation of the ALD. We conduct several simulations under different error distributions to demonstrate the performance of the algorithm, and finally apply it to analyse a real data set, finding that the procedure has good performance.  相似文献   

3.
In this paper, we discuss the regularization in linear-mixed quantile regression. A hierarchical Bayesian model is used to shrink the fixed and random effects towards the common population values by introducing an l1 penalty in the mixed quantile regression check function. A Gibbs sampler is developed to simulate the parameters from the posterior distributions. Through simulation studies and analysis of an age-related macular degeneration (ARMD) data, we assess the performance of the proposed method. The simulation studies and the ARMD data analysis indicate that the proposed method performs well in comparison with the other approaches.  相似文献   

4.
Quantile regression has gained increasing popularity as it provides richer information than the regular mean regression, and variable selection plays an important role in the quantile regression model building process, as it improves the prediction accuracy by choosing an appropriate subset of regression predictors. Unlike the traditional quantile regression, we consider the quantile as an unknown parameter and estimate it jointly with other regression coefficients. In particular, we adopt the Bayesian adaptive Lasso for the maximum entropy quantile regression. A flat prior is chosen for the quantile parameter due to the lack of information on it. The proposed method not only addresses the problem about which quantile would be the most probable one among all the candidates, but also reflects the inner relationship of the data through the estimated quantile. We develop an efficient Gibbs sampler algorithm and show that the performance of our proposed method is superior than the Bayesian adaptive Lasso and Bayesian Lasso through simulation studies and a real data analysis.  相似文献   

5.
Single index model conditional quantile regression is proposed in order to overcome the dimensionality problem in nonparametric quantile regression. In the proposed method, the Bayesian elastic net is suggested for single index quantile regression for estimation and variables selection. The Gaussian process prior is considered for unknown link function and a Gibbs sampler algorithm is adopted for posterior inference. The results of the simulation studies and numerical example indicate that our propose method, BENSIQReg, offers substantial improvements over two existing methods, SIQReg and BSIQReg. The BENSIQReg has consistently show a good convergent property, has the least value of median of mean absolute deviations and smallest standard deviations, compared to the other two methods.  相似文献   

6.
One advantage of quantile regression, relative to the ordinary least-square (OLS) regression, is that the quantile regression estimates are more robust against outliers and non-normal errors in the response measurements. However, the relative efficiency of the quantile regression estimator with respect to the OLS estimator can be arbitrarily small. To overcome this problem, composite quantile regression methods have been proposed in the literature which are resistant to heavy-tailed errors or outliers in the response and at the same time are more efficient than the traditional single quantile-based quantile regression method. This paper studies the composite quantile regression from a Bayesian perspective. The advantage of the Bayesian hierarchical framework is that the weight of each component in the composite model can be treated as open parameter and automatically estimated through Markov chain Monte Carlo sampling procedure. Moreover, the lasso regularization can be naturally incorporated into the model to perform variable selection. The performance of the proposed method over the single quantile-based method was demonstrated via extensive simulations and real data analysis.  相似文献   

7.
In this paper, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC) method for longitudinal data models with random effects. Under the assumption of error term subject to asymmetric Laplace distribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at τ-th level. We overcome the current computational limitations using two approaches. One is the general MCMC technique with Metropolis–Hastings algorithm and another is the Gibbs sampling from the full conditional distribution. These two methods outperform the traditional frequentist methods under a wide array of simulated data models and are flexible enough to easily accommodate changes in the number of random effects and in their assumed distribution. We apply the Gibbs sampling method to analyse a mouse growth data and some different conclusions from those in the literatures are obtained.  相似文献   

8.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

9.
Composite quantile regression models have been shown to be effective techniques in improving the prediction accuracy [H. Zou and M. Yuan, Composite quantile regression and the oracle model selection theory, Ann. Statist. 36 (2008), pp. 1108–1126; J. Bradic, J. Fan, and W. Wang, Penalized composite quasi-likelihood for ultrahighdimensional variable selection, J. R. Stat. Soc. Ser. B 73 (2011), pp. 325–349; Z. Zhao and Z. Xiao, Efficient regressions via optimally combining quantile information, Econometric Theory 30(06) (2014), pp. 1272–1314]. This paper studies composite Tobit quantile regression (TQReg) from a Bayesian perspective. A simple and efficient MCMC-based computation method is derived for posterior inference using a mixture of an exponential and a scaled normal distribution of the skewed Laplace distribution. The approach is illustrated via simulation studies and a real data set. Results show that combine information across different quantiles can provide a useful method in efficient statistical estimation. This is the first work to discuss composite TQReg from a Bayesian perspective.  相似文献   

10.
The check loss function is used to define quantile regression. In cross-validation, it is also employed as a validation function when the true distribution is unknown. However, our empirical study indicates that validation with the check loss often leads to overfitting the data. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. This has the effect of guarding against overfitting to some extent. The adjustment is devised to shrink to zero as sample size grows. Through various simulation settings of linear and nonlinear regressions, the improvement due to modification of the check loss by quadratic adjustment is examined empirically.  相似文献   

11.
In this article, a non-iterative posterior sampling algorithm for linear quantile regression model based on the asymmetric Laplace distribution is proposed. The algorithm combines the inverse Bayes formulae, sampling/importance resampling, and the expectation maximization algorithm to obtain independently and identically distributed samples approximately from the observed posterior distribution, which eliminates the convergence problems in the iterative Gibbs sampling and overcomes the difficulty in evaluating the standard deviance in the EM algorithm. The numeric results in simulations and application to the classical Engel data show that the non-iterative sampling algorithm is more effective than the Gibbs sampling and EM algorithm.  相似文献   

12.
A Bayesian approach is proposed for coefficient estimation in the Tobit quantile regression model. The proposed approach is based on placing a g-prior distribution depends on the quantile level on the regression coefficients. The prior is generalized by introducing a ridge parameter to address important challenges that may arise with censored data, such as multicollinearity and overfitting problems. Then, a stochastic search variable selection approach is proposed for Tobit quantile regression model based on g-prior. An expression for the hyperparameter g is proposed to calibrate the modified g-prior with a ridge parameter to the corresponding g-prior. Some possible extensions of the proposed approach are discussed, including the continuous and binary responses in quantile regression. The methods are illustrated using several simulation studies and a microarray study. The simulation studies and the microarray study indicate that the proposed approach performs well.  相似文献   

13.
We propose a new algorithm for simultaneous variable selection and parameter estimation for the single-index quantile regression (SIQR) model . The proposed algorithm, which is non iterative , consists of two steps. Step 1 performs an initial variable selection method. Step 2 uses the results of Step 1 to obtain better estimation of the conditional quantiles and , using them, to perform simultaneous variable selection and estimation of the parametric component of the SIQR model. It is shown that the initial variable selection method consistently estimates the relevant variables , and the estimated parametric component derived in Step 2 satisfies the oracle property.  相似文献   

14.
The multi-cycle organization of modern university systems stimulates the interest in studying the progression to higher level degree courses during the academic career. In particular, after the achievement of the first level qualification (Bachelor degree), students have to decide whether to continue their university studies, by enrolling in a second level (Master) programme, or to conclude their training experience. In this work we propose a binary quantile regression (BQR) approach to analyse the Bachelor-to-Master transition phenomenon with the adoption of the Bayesian inferential perspective. In addition to the traditional predictors of academic outcomes, such as the personal characteristics and the field of study, different aspects of student's performance are considered. Moreover, the role of a new contextual variable, representing the type of university regulations experienced during the academic path, is investigated. The utility of the Bayesian BQR to characterize the non-continuation decision after the first cycle studies is illustrated with an application to administrative data of Bachelor graduates at the School of Economics of Sapienza University of Rome. The method favourably compares with more conventional model specifications concerning the conditional mean of the binary response.  相似文献   

15.
This paper considers a problem of variable selection in quantile regression with autoregressive errors. Recently, Wu and Liu (2009) investigated the oracle properties of the SCAD and adaptive-LASSO penalized quantile regressions under non identical but independent error assumption. We further relax the error assumptions so that the regression model can hold autoregressive errors, and then investigate theoretical properties for our proposed penalized quantile estimators under the relaxed assumption. Optimizing the objective function is often challenging because both quantile loss and penalty functions may be non-differentiable and/or non-concave. We adopt the concept of pseudo data by Oh et al. (2007) to implement a practical algorithm for the quantile estimate. In addition, we discuss the convergence property of the proposed algorithm. The performance of the proposed method is compared with those of the majorization-minimization algorithm (Hunter and Li, 2005) and the difference convex algorithm (Wu and Liu, 2009) through numerical and real examples.  相似文献   

16.
Model selection in quantile regression models   总被引:1,自引:0,他引:1  
Lasso methods are regularisation and shrinkage methods widely used for subset selection and estimation in regression problems. From a Bayesian perspective, the Lasso-type estimate can be viewed as a Bayesian posterior mode when specifying independent Laplace prior distributions for the coefficients of independent variables [32 T. Park, G. Casella, The Bayesian Lasso, J. Amer. Statist. Assoc. 103 (2008), pp. 681686. doi: 10.1198/016214508000000337[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]]. A scale mixture of normal priors can also provide an adaptive regularisation method and represents an alternative model to the Bayesian Lasso-type model. In this paper, we assign a normal prior with mean zero and unknown variance for each quantile coefficient of independent variable. Then, a simple Markov Chain Monte Carlo-based computation technique is developed for quantile regression (QReg) models, including continuous, binary and left-censored outcomes. Based on the proposed prior, we propose a criterion for model selection in QReg models. The proposed criterion can be applied to classical least-squares, classical QReg, classical Tobit QReg and many others. For example, the proposed criterion can be applied to rq(), lm() and crq() which is available in an R package called Brq. Through simulation studies and analysis of a prostate cancer data set, we assess the performance of the proposed methods. The simulation studies and the prostate cancer data set analysis confirm that our methods perform well, compared with other approaches.  相似文献   

17.
Quantile regression is a flexible approach to assessing covariate effects on failure time, which has attracted considerable interest in survival analysis. When the dimension of covariates is much larger than the sample size, feature screening and variable selection become extremely important and indispensable. In this article, we introduce a new feature screening method for ultrahigh dimensional censored quantile regression. The proposed method can work for a general class of survival models, allow for heterogeneity of data and enjoy desirable properties including the sure screening property and the ranking consistency property. Moreover, an iterative version of screening algorithm has also been proposed to accommodate more complex situations. Monte Carlo simulation studies are designed to evaluate the finite sample performance under different model settings. We also illustrate the proposed methods through an empirical analysis.  相似文献   

18.
In this paper, we develop a conditional model for analyzing mixed bivariate continuous and ordinal longitudinal responses. We propose a quantile regression model with random effects for analyzing continuous responses. For this purpose, an Asymmetric Laplace Distribution (ALD) is allocated for continuous response given random effects. For modeling ordinal responses, a cumulative logit model is used, via specifying a latent variable model, with considering other random effects. Therefore, the intra-association between continuous and ordinal responses is taken into account using their own exclusive random effects. But, the inter-association between two mixed responses is taken into account by adding a continuous response term in the ordinal model. We use a Bayesian approach via Markov chain Monte Carlo method for analyzing the proposed conditional model and to estimate unknown parameters, a Gibbs sampler algorithm is used. Moreover, we illustrate an application of the proposed model using a part of the British Household Panel Survey data set. The results of data analysis show that gender, age, marital status, educational level and the amount of money spent on leisure have significant effects on annual income. Also, the associated parameter is significant in using the best fitting proposed conditional model, thus it should be employed rather than analyzing separate models.  相似文献   

19.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

20.
In this paper, we consider the weighted composite quantile regression for linear model with left-truncated data. The adaptive penalized procedure for variable selection is proposed. The asymptotic normality and oracle property of the resulting estimators are also established. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号