首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary Let , whereX i are i.i.d. random variables with a finite variance σ2 and is the usual estimate of the mean ofX i. We consider the problem of finding optimal α with respect to the minimization of the expected value of |S 2(σ)−σ2|k for variousk and with respect to Pitman's nearness criterion. For the Gaussian case analytical results are obtained and for some non-Gaussian cases we present Monte Carlo results regarding Pitman's criteron. This research was supported by Science Fund of Serbia, grant number 04M03, through Mathematical Institute, Belgrade.  相似文献   

2.
LetF(x,y) be a distribution function of a two dimensional random variable (X,Y). We assume that a distribution functionF x(x) of the random variableX is known. The variableX will be called an auxiliary variable. Our purpose is estimation of the expected valuem=E(Y) on the basis of two-dimensional simple sample denoted by:U=[(X 1, Y1)…(Xn, Yn)]=[X Y]. LetX=[X 1X n]andY=[Y 1Y n].This sample is drawn from a distribution determined by the functionF(x,y). LetX (k)be the k-th (k=1, …,n) order statistic determined on the basis of the sampleX. The sampleU is truncated by means of this order statistic into two sub-samples: % MathType!End!2!1! and % MathType!End!2!1!.Let % MathType!End!2!1! and % MathType!End!2!1! be the sample means from the sub-samplesU k,1 andU k,2, respectively. The linear combination % MathType!End!2!1! of these means is the conditional estimator of the expected valuem. The coefficients of this linear combination depend on the distribution function of auxiliary variable in the pointx (k).We can show that this statistic is conditionally as well as unconditionally unbiased estimator of the averagem. The variance of this estimator is derived. The variance of the statistic % MathType!End!2!1! is compared with the variance of the order sample mean. The generalization of the conditional estimation of the mean is considered, too.  相似文献   

3.
The additive model is considered when some observations on x are missing at random but corresponding observations on y are available. Especially for this model, missing at random is an interesting case because the complete case analysis is expected to be no more suitable. A simulation experiment is reported and the different methods are compared based on their superiority with respect to the sample mean squared error. Some focus is also given on the sample variance and the estimated bias. In detail, the complete case analysis, a kind of stochastic mean imputation, a single imputation and the nearest neighbor imputation are discussed.  相似文献   

4.
Estimation of a normal mean relative to balanced loss functions   总被引:3,自引:0,他引:3  
LetX 1,…,X nbe a random sample from a normal distribution with mean θ and variance σ2. The problem is to estimate θ with Zellner's (1994) balanced loss function, % MathType!End!2!1!, where 0<ω<1. It is shown that the sample mean % MathType!End!2!1!, is admissible. More generally, we investigate the admissibility of estimators of the form % MathType!End!2!1! under % MathType!End!2!1!. We also consider the weighted balanced loss function, % MathType!End!2!1!, whereq(θ) is any positive function of θ, and the class of admissible linear estimators is obtained under such loss withq(θ) =e θ .  相似文献   

5.
Given a stationary multidimensional spatial process $\left\{ Z_{\mathbf{i}}=\left( X_{\mathbf{i}},\ Y_{\mathbf{i}}\right) \in \mathbb R ^d\right. \left. \times \mathbb R ,\mathbf{i}\in \mathbb Z ^{N}\right\} $ , we investigate a kernel estimate of the spatial conditional mode function of the response variable $Y_{\mathbf{i}}$ given the explicative variable $X_{\mathbf{i}}$ . Consistency in $L^p$ norm and strong convergence of the kernel estimate are obtained when the sample considered is a $\alpha $ -mixing sequence. An application to real data is given in order to illustrate the behavior of our methodology.  相似文献   

6.
Improvement of the Liu estimator in linear regression model   总被引:2,自引:0,他引:2  
In the presence of stochastic prior information, in addition to the sample, Theil and Goldberger (1961) introduced a Mixed Estimator for the parameter vector β in the standard multiple linear regression model (T,2 I). Recently, the Liu estimator which is an alternative biased estimator for β has been proposed by Liu (1993). In this paper we introduce another new Liu type biased estimator called Stochastic restricted Liu estimator for β, and discuss its efficiency. The necessary and sufficient conditions for mean squared error matrix of the Stochastic restricted Liu estimator to exceed the mean squared error matrix of the mixed estimator will be derived for the two cases in which the parametric restrictions are correct and are not correct. In particular we show that this new biased estimator is superior in the mean squared error matrix sense to both the Mixed estimator and to the biased estimator introduced by Liu (1993).  相似文献   

7.
This paper addresses the issue of estimating the expectation of a real-valued random variable of the form \(X = g(\mathbf {U})\) where g is a deterministic function and \(\mathbf {U}\) can be a random finite- or infinite-dimensional vector. Using recent results on rare event simulation, we propose a unified framework for dealing with both probability and mean estimation for such random variables, i.e. linking algorithms such as Tootsie Pop Algorithm or Last Particle Algorithm with nested sampling. Especially, it extends nested sampling as follows: first the random variable X does not need to be bounded any more: it gives the principle of an ideal estimator with an infinite number of terms that is unbiased and always better than a classical Monte Carlo estimator—in particular it has a finite variance as soon as there exists \(k \in \mathbb {R}> 1\) such that \({\text {E}}\left[ X^k \right] < \infty \). Moreover we address the issue of nested sampling termination and show that a random truncation of the sum can preserve unbiasedness while increasing the variance only by a factor up to 2 compared to the ideal case. We also build an unbiased estimator with fixed computational budget which supports a Central Limit Theorem and discuss parallel implementation of nested sampling, which can dramatically reduce its running time. Finally we extensively study the case where X is heavy-tailed.  相似文献   

8.
The first probabilistic definition of the geometric mean of a non negative random variable under certain assumptions was given in Feng et al. (2013 Feng, C., Wang, H., Tu, X. (2013). Geometric mean of nonnegative random variable. Commun. Stat.—Theory Methods 42:27142717.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]). In this paper, we generalize the definition to a larger class of random variables. We also show the basic properties of the geometric mean and point out its discontinuity and instability. Some convergence properties are studied as well, for which we emphasize its link to the positive moments of the random variable. A discussion of potential applications of the new definition in biomedical research and open questions to complete the theory of geometric mean is highlighted.  相似文献   

9.
The distributions of the product and ratio of independent random variables arise in many applied problems. These have been extensively studied by many researchers. In this paper, the distributions of the product | XY | and ratio have been derived, when X and Y are Maxwell and Rayleigh random variables and are distributed independently of each other. The associated cdfs, pdfs, kth moments, entropies, etc., have been given. To describe the possible shapes of the associated pdfs and entropies, the respective plots are provided. The percentage points associated with the cdfs of the product and ratio have been tabulated.  相似文献   

10.
Let \(\mathbb{N } = \{1, 2, 3, \ldots \}\) . Let \(\{X, X_{n}; n \in \mathbb N \}\) be a sequence of i.i.d. random variables, and let \(S_{n} = \sum _{i=1}^{n}X_{i}, n \in \mathbb N \) . Then \( S_{n}/\sqrt{n} \Rightarrow N(0, \sigma ^{2})\) for some \(\sigma ^{2} < \infty \) whenever, for a subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}} \Rightarrow N(0, \sigma ^{2})\) . Motivated by this result, we study the central limit theorem along subsequences of sums of i.i.d. random variables when \(\{\sqrt{n}; n \in \mathbb N \}\) is replaced by \(\{\sqrt{na_{n}};n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) . We show that, for given positive nondecreasing sequence \(\{a_{n}; n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) and \(\lim _{n \rightarrow \infty } a_{n+1}/a_{n} = 1\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}a_{n_{k}}} \Rightarrow N(0, 1)\) . In particular, for given \(0 < p < 2\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/n_{k}^{1/p} \Rightarrow N(0, 1)\) .  相似文献   

11.
In this paper, we investigate a nonparametric estimation of the conditional density of a scalar response variable given a random variable taking values in separable Hilbert space. We establish under general conditions the uniform almost complete convergence rates and the asymptotic normality of the conditional density kernel estimator, when the variables satisfy the strong mixing dependency, based on the single-index structure. The asymptotic \((1-\zeta )\) confidence intervals of conditional density function are given, for \(0 < \zeta < 1\) . We further demonstrate the impact of this functional parameter to the conditional mode estimate. Simulation study is also presented. Finally, the estimation of the functional index via the pseudo-maximum likelihood method is discussed, but not tackled.  相似文献   

12.
Let (X1, X2, Y1, Y2) be a four dimensional random variable having the joint probability density function f(x1, x2, y1, y2). In this paper we consider the problem of estimating the regression function \({{E[(_{Y_2 }^{Y_1 } )} \mathord{\left/ {\vphantom {{E[(_{Y_2 }^{Y_1 } )} {_{X_2 = X_2 }^{X_1 = X_1 } }}} \right. \kern-0em} {_{X_2 = X_2 }^{X_1 = X_1 } }}]\) on the basis of a random sample of size n. We have proved that under certain regularity conditions the kernel estimate of this regression function is uniformly strongly consistent. We have also shown that under certain conditions the estimate is asymptotically normally distributed.  相似文献   

13.
When constructing uniform random numbers in [0, 1] from the output of a physical device, usually n independent and unbiased bits B j are extracted and combined into the machine number . In order to reduce the number of data used to build one real number, we observe that for independent and exponentially distributed random variables X n (which arise for example as waiting times between two consecutive impulses of a Geiger counter) the variable U n : = X 2n – 1/(X 2n – 1 + X 2n ) is uniform in [0, 1]. In the practical application X n can only be measured up to a given precision (in terms of the expectation of the X n ); it is shown that the distribution function obtained by calculating U n from these measurements differs from the uniform by less than /2.We compare this deviation with the error resulting from the use of biased bits B j with P {B j = 1{ = (where ] – [) in the construction of Y above. The influence of a bias is given by the estimate that in the p-total variation norm Q TV p = ( |Q()| p )1/p (p 1) we have P Y P 0 Y TV p (c n · )1/p with c n p for n . For the distribution function F Y F 0 Y 2(1 – 2n )|| holds.  相似文献   

14.
Summary In this paper likelihood is characterized as an index which measures how much a model fits a sample. Some properties required to an index of fit are introduced and discussed, while stressing how they describe aspects inner to idea of fit. Finally we prove that, if an index of fit is maximal when the model reaches the distribution of the sample, then such an index is an increasing continuous transform of , where thep i's are the theoretical relative frequencies provided by the model and theq i's are the actual relative frequencies of the sample.  相似文献   

15.
ABSTRACT

The sum of independent exponential random variables – the hypoexponential random variables – plays an important role of modeling in many domains. Khuong and Kong in (2006) Khuong, H.V., Kong, H.Y. (2006). General expression for pdf of a sum of independent exponential random variables. IEEE Commun. Lett. 10: 159161.[Crossref], [Web of Science ®] [Google Scholar] were concerned in evaluating the performance of some diversity scheme, which deals with the problem of finding the probability density function of this hypoexponential random variable. They considered a particular case of m independent exponential random variable, when l random variables have the same mean and m ? l remaining random variables of different means and they found a closed expression of its probability density function. In this paper, we consider the general case of the hypoexponential random variable when the means do not have to be distinct. We find a more simple and general closed expression of its probability density function than that of Khuong and Kong. This expression is obtained using a new defined matrix called the Kad matrix, which is similar to the general Vandermonde matrix. Eventually, we present an application illustrating our work.  相似文献   

16.
17.
The objective of this paper is to construct an unbiased estimator (up to order 0(1/n)) of the population mean of the study variatey which is more efficient than the sample mean of the ‘n’ obsrvedy-values. In particular, the unbiased estimators are discussed for the cases of positive and negative correlations of the study variatey and the auxiliary variatex.  相似文献   

18.
Using Fisher's information fort-distributions, the absolute asymptotic efficiency of some M-estimates for scale with known location parameter is calculated and graphically illustrated. The compared estimators are the standard deviationS *, the mean absolute deviation, called mean deviationD *, the median absolute deviation, called MAD*, and some M-estimates for scale, one, which is very robust, and another one with high asymptotic efficiency fort-distributions close to the normal. The last one is considered with monotone (in the positive field) and with very late redescending χ-function too. Also the , an alternative and generalized excess measure defined as the double relative asymptotic variance of the underlying scale estimator in the previous paper, is calculated fort-distributions and graphically illustrated, because there is the relation that the higher the asymptotic efficiency of is, the lower is the corresponding .  相似文献   

19.
This paper is devoted to the problem of estimating the square of population mean (μ2) in normal distribution when a prior estimate or guessed value σ0 2 of the population variance σ2 is available. We have suggested a family of shrinkage estimators , say, for μ2 with its mean squared error formula. A condition is obtained in which the suggested estimator is more efficient than Srivastava et al’s (1980) estimator Tmin. Numerical illustrations have been carried out to demonstrate the merits of the constructed estimator over Tmin. It is observed that some of these estimators offer improvements over Tmin particularly when the population is heterogeneous and σ2 is in the vicinity of σ0 2.  相似文献   

20.
The usual assumptions for the average case analysis of binary search trees (BSTs) are random insertions and random deletions. If a BST is built by n random insertions the expected number of key comparisons necessary to access a node is 2 ln n+O(1). This well-known result is already contained in the first papers on such ‘random’ BSTs. However, if random insertions are intermixed with random deletions the analysis of the resulting BST seems to become more intricate. At least this is the impression one gets from the related publications since 1962, and it is quite appropriate to speak of a story of errors in this context, as will be seen in the present survey paper, giving an overview on this story.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号