首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new implementations of the EM algorithm are proposed for maximum likelihood fitting of generalized linear mixed models. Both methods use random (independent and identically distributed) sampling to construct Monte Carlo approximations at the E-step. One approach involves generating random samples from the exact conditional distribution of the random effects (given the data) by rejection sampling, using the marginal distribution as a candidate. The second method uses a multivariate t importance sampling approximation. In many applications the two methods are complementary. Rejection sampling is more efficient when sample sizes are small, whereas importance sampling is better with larger sample sizes. Monte Carlo approximation using random samples allows the Monte Carlo error at each iteration to be assessed by using standard central limit theory combined with Taylor series methods. Specifically, we construct a sandwich variance estimate for the maximizer at each approximate E-step. This suggests a rule for automatically increasing the Monte Carlo sample size after iterations in which the true EM step is swamped by Monte Carlo error. In contrast, techniques for assessing Monte Carlo error have not been developed for use with alternative implementations of Monte Carlo EM algorithms utilizing Markov chain Monte Carlo E-step approximations. Three different data sets, including the infamous salamander data of McCullagh and Nelder, are used to illustrate the techniques and to compare them with the alternatives. The results show that the methods proposed can be considerably more efficient than those based on Markov chain Monte Carlo algorithms. However, the methods proposed may break down when the intractable integrals in the likelihood function are of high dimension.  相似文献   

2.
Exact Sampling from a Continuous State Space   总被引:3,自引:0,他引:3  
Propp & Wilson (1996) described a protocol, called coupling from the past, for exact sampling from a target distribution using a coupled Markov chain Monte Carlo algorithm. In this paper we extend coupling from the past to various MCMC samplers on a continuous state space; rather than following the monotone sampling device of Propp & Wilson, our approach uses methods related to gamma-coupling and rejection sampling to simulate the chain, and direct accounting of sample paths.  相似文献   

3.
Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305–320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom.  相似文献   

4.
Although Markov chain Monte Carlo methods have been widely used in many disciplines, exact eigen analysis for such generated chains has been rare. In this paper, a special Metropolis-Hastings algorithm, Metropolized independent sampling, proposed first in Hastings (1970), is studied in full detail. The eigenvalues and eigenvectors of the corresponding Markov chain, as well as a sharp bound for the total variation distance between the nth updated distribution and the target distribution, are provided. Furthermore, the relationship between this scheme, rejection sampling, and importance sampling are studied with emphasis on their relative efficiencies. It is shown that Metropolized independent sampling is superior to rejection sampling in two respects: asymptotic efficiency and ease of computation.  相似文献   

5.
The maximum likelihood and Bayesian approaches have been considered for the two-parameter generalized exponential distribution based on record values with the number of trials following the record values (inter-record times). The maximum likelihood estimates are obtained under the inverse sampling and the random sampling schemes. It is shown that the maximum likelihood estimator of the shape parameter converges in mean square to the true value when the scale parameter is known. The Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The confidence intervals for the parameters are constructed based on asymptotic and Bayesian methods. The Bayes and the maximum likelihood estimators are compared in terms of the estimated risk by the Monte Carlo simulations. The comparison of the estimators based on the record values and the record values with their corresponding inter-record times are performed by using Monte Carlo simulations.  相似文献   

6.
Park  Joonha  Atchadé  Yves 《Statistics and Computing》2020,30(5):1325-1345

We explore a general framework in Markov chain Monte Carlo (MCMC) sampling where sequential proposals are tried as a candidate for the next state of the Markov chain. This sequential-proposal framework can be applied to various existing MCMC methods, including Metropolis–Hastings algorithms using random proposals and methods that use deterministic proposals such as Hamiltonian Monte Carlo (HMC) or the bouncy particle sampler. Sequential-proposal MCMC methods construct the same Markov chains as those constructed by the delayed rejection method under certain circumstances. In the context of HMC, the sequential-proposal approach has been proposed as extra chance generalized hybrid Monte Carlo (XCGHMC). We develop two novel methods in which the trajectories leading to proposals in HMC are automatically tuned to avoid doubling back, as in the No-U-Turn sampler (NUTS). The numerical efficiency of these new methods compare favorably to the NUTS. We additionally show that the sequential-proposal bouncy particle sampler enables the constructed Markov chain to pass through regions of low target density and thus facilitates better mixing of the chain when the target density is multimodal.

  相似文献   

7.
We present a versatile Monte Carlo method for estimating multidimensional integrals, with applications to rare-event probability estimation. The method fuses two distinct and popular Monte Carlo simulation methods—Markov chain Monte Carlo and importance sampling—into a single algorithm. We show that for some applied numerical examples the proposed Markov Chain importance sampling algorithm performs better than methods based solely on importance sampling or MCMC.  相似文献   

8.
In this paper, we present an adaptive evolutionary Monte Carlo algorithm (AEMC), which combines a tree-based predictive model with an evolutionary Monte Carlo sampling procedure for the purpose of global optimization. Our development is motivated by sensor placement applications in engineering, which requires optimizing certain complicated “black-box” objective function. The proposed method is able to enhance the optimization efficiency and effectiveness as compared to a few alternative strategies. AEMC falls into the category of adaptive Markov chain Monte Carlo (MCMC) algorithms and is the first adaptive MCMC algorithm that simulates multiple Markov chains in parallel. A theorem about the ergodicity property of the AEMC algorithm is stated and proven. We demonstrate the advantages of the proposed method by applying it to a sensor placement problem in a manufacturing process, as well as to a standard Griewank test function.  相似文献   

9.
An automated (Markov chain) Monte Carlo EM algorithm   总被引:1,自引:0,他引:1  
We present an automated Monte Carlo EM (MCEM) algorithm which efficiently assesses Monte Carlo error in the presence of dependent Monte Carlo, particularly Markov chain Monte Carlo, E-step samples and chooses an appropriate Monte Carlo sample size to minimize this Monte Carlo error with respect to progressive EM step estimates. Monte Carlo error is gauged though an application of the central limit theorem during renewal periods of the MCMC sampler used in the E-step. The resulting normal approximation allows us to construct a rigorous and adaptive rule for updating the Monte Carlo sample size each iteration of the MCEM algorithm. We illustrate our automated routine and compare the performance with competing MCEM algorithms in an analysis of a data set fit by a generalized linear mixed model.  相似文献   

10.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

11.
Monte Carlo methods for the exact inference have received much attention recently in complete or incomplete contingency table analysis. However, conventional Markov chain Monte Carlo, such as the Metropolis–Hastings algorithm, and importance sampling methods sometimes generate the poor performance by failing to produce valid tables. In this paper, we apply an adaptive Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm (SAMC; Liang, Liu, & Carroll, 2007), to the exact test of the goodness-of-fit of the model in complete or incomplete contingency tables containing some structural zero cells. The numerical results are in favor of our method in terms of quality of estimates.  相似文献   

12.
Watanabe estimated the dynamic bivariate mixture models introduced by Tauchen and Pitts and modified by Andersen using a Bayesian method via Markov chain Monte Carlo techniques. Based on a maximum likelihood method via efficient importance sampling, Liesenfeld and Richard obtained estimates that are significantly different from those of Watanabe. This note corrects the error in the multimove sampler used by Watanabe and reproduces all analyses in the work of Watanabe using a corrected multimove sampler. The estimates using the correct multimove sampler are found to be close to those obtained by Liesenfeld and Richard.  相似文献   

13.
In this article, we develop rejection sampling algorithms to sample from some truncated and tail distributions. Such samplers are needed in many Markov chain Monte Carlo methods, often in connection with Bayesian inference. In addition to univariate normal, gamma, and beta distributions, we consider multivariate normal distributions truncated to certain sets.  相似文献   

14.
Reversible jump Markov chain Monte Carlo (RJMCMC) algorithms can be efficiently applied in Bayesian inference for hidden Markov models (HMMs), when the number of latent regimes is unknown. As for finite mixture models, when priors are invariant to the relabelling of the regimes, HMMs are unidentifiable in data fitting, because multiple ways to label the regimes can alternate during the MCMC iterations; this is the so-called label switching problem. HMMs with an unknown number of regimes are considered here and the goal of this paper is the comparison, both applied and theoretical, of five methods used for tackling label switching within a RJMCMC algorithm; they are: post-processing, partial reordering, permutation sampling, sampling from a Markov prior and rejection sampling. The five strategies we compare have been proposed mostly in the literature of finite mixture models and only two of them, i.e. rejection sampling and partial reordering, have been presented in RJMCMC algorithms for HMMs. We consider RJMCMC algorithms in which the parameters are updated by Gibbs sampling and the dimension of the model changes in split-and-merge and birth-and-death moves. Finally, an example illustrates and compares the five different methodologies.  相似文献   

15.
Summary.  Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Markov chain Monte Carlo procedure. When the maximum likelihood estimator does not exist, an estimator can be obtained by using a penalized likelihood function or by the Markov chain Monte Carlo procedure with a suitable prior. The methodology and its implementation are illustrated by examples and simulation studies.  相似文献   

16.
For the purpose of maximum likelihood estimation of static parameters, we apply a kernel smoother to the particles in the standard SIR filter for non-linear state space models with additive Gaussian observation noise. This reduces the Monte Carlo error in the estimates of both the posterior density of the states and the marginal density of the observation at each time point. We correct for variance inflation in the smoother, which together with the use of Gaussian kernels, results in a Gaussian (Kalman) update when the amount of smoothing turns to infinity. We propose and study of a criterion for choosing the optimal bandwidth h in the kernel smoother. Finally, we illustrate our approach using examples from econometrics. Our filter is shown to be highly suited for dynamic models with high signal-to-noise ratio, for which the SIR filter has problems.  相似文献   

17.
Pseudo-marginal Markov chain Monte Carlo methods for sampling from intractable distributions have gained recent interest and have been theoretically studied in considerable depth. Their main appeal is that they are exact, in the sense that they target marginally the correct invariant distribution. However, the pseudo-marginal Markov chain can exhibit poor mixing and slow convergence towards its target. As an alternative, a subtly different Markov chain can be simulated, where better mixing is possible but the exactness property is sacrificed. This is the noisy algorithm, initially conceptualised as Monte Carlo within Metropolis, which has also been studied but to a lesser extent. The present article provides a further characterisation of the noisy algorithm, with a focus on fundamental stability properties like positive recurrence and geometric ergodicity. Sufficient conditions for inheriting geometric ergodicity from a standard Metropolis–Hastings chain are given, as well as convergence of the invariant distribution towards the true target distribution.  相似文献   

18.
The authors describe Bayesian estimation for the parameters of the bivariate gamma distribution due to Kibble (1941). The density of this distribution can be written as a mixture, which allows for a simple data augmentation scheme. The authors propose a Markov chain Monte Carlo algorithm to facilitate estimation. They show that the resulting chain is geometrically ergodic, and thus a regenerative sampling procedure is applicable, which allows for estimation of the standard errors of the ergodic means. They develop Bayesian hypothesis testing procedures to test both the dependence hypothesis of the two variables and the hypothesis of equal means. They also propose a reversible jump Markov chain Monte Carlo algorithm to carry out the model selection problem. Finally, they use sets of real and simulated data to illustrate their methodology.  相似文献   

19.
A significant problem in the collection of responses to potentially sensitive questions, such as relating to illegal, immoral or embarrassing activities, is non-sampling error due to refusal to respond or false responses. Eichhorn & Hayre (1983) suggested the use of scrambled responses to reduce this form of bias. This paper considers a linear regression model in which the dependent variable is unobserved but for which the sum or product with a scrambling random variable of known distribution, is known. The performance of two likelihood-based estimators is investigated, namely of a Bayesian estimator achieved through a Markov chain Monte Carlo (MCMC) sampling scheme, and a classical maximum-likelihood estimator. These two estimators and an estimator suggested by Singh, Joarder & King (1996) are compared. Monte Carlo results show that the Bayesian estimator out-performs the classical estimators in all cases, and the relative performance of the Bayesian estimator improves as the responses become more scrambled.  相似文献   

20.
This paper develops the Bayesian estimation for the Birnbaum–Saunders distribution based on Type-II censoring in the simple step stress–accelerated life test with power law accelerated form. Maximum likelihood estimates are obtained and Gibbs sampling procedure is used to get the Bayesian estimates for shape parameter of Birnbaum–Saunders distribution and parameters of power law–accelerated model. Asymptotic normality method and Markov Chain Monte Carlo method are employed to construct the corresponding confidence interval and highest posterior density interval at different confidence level, respectively. At last, the results are compared by using Monte Carlo simulations, and a numerical example is analyzed for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号