首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used here. In this article, we propose an improved asymmetric EWMA mean chart based on a simple statistic to monitor process mean shift. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed asymmetric EWMA mean chart. We recommend the proposed improved asymmetric EWMA mean chart because the average run lengths of the modified charts are more accurate and reasonable than those of the five existed mean charts. A numerical example of service times with a right skewed distribution from a service system of a bank branch is used to illustrate the application of the improved asymmetric EWMA mean chart and to compare it with the five existing mean charts. The proposed chart showed better detection performance than those of the five existing mean charts in monitoring and detecting shifts in the process mean.  相似文献   

2.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

3.
The von Mises distribution is widely used for modeling angular data. When such data are seen in a quality control setting, there may be interest in checking whether the values are in statistical control or have gone out of control. A cumulative sum (cusum) control chart has desirable properties for checking whether the distribution has changed from an in-control to an out-of-control setting. This paper develops cusums for a change in the mean direction and concentration of angular data and illustrates some of their properties.  相似文献   

4.
This article develops combined exponentially weighted moving average (EWMA) charts for the mean and variance of a normal distribution. A Bayesian approach is used to incorporate parameter uncertainty. We first use a Bayesian predictive distribution to construct the control chart, and we then use a sampling theory approach to evaluate it under various hypothetical specifications for the data generation model. Simulations are used to compare the proposed charts for different values of both the weighing constant for the exponentially weighted moving averages and for the size of the calibration sample that is used to estimate the in-statistical-control process parameters. We also examine the separate performance of the EWMA chart for the variance.  相似文献   

5.
In this article, we will present a control chart using normal transformation and generally weighted moving average (GWMA) statistic when the quality characteristic follows the exponential distribution. We will develop the necessary measures to monitor the mean of the process using GWMA statistic and analyze the performance using simulation. The average run lengths for monitoring process average are given for various process shifts. The performance of the proposed chart is examined and compared with the existing control chart. The proposed control chart is effective for the monitoring of small shifts in the mean process. The application of the proposed chart is illustrated with the help of simulated data.  相似文献   

6.
This article develops a control chart for a mean vector when it is monitored by a quadratic form in the exponentially weighted observation vector. A Bayesian approach is used to incorporate parameter uncertainty. We first use a Bayesian predictive distribution to construct the control chart, and we then use a sampling theory approach to evaluate it under various hypothetical specifications for the data generation model.  相似文献   

7.
This article develops a control chart for the variance of a normal distribution and, equivalently, the coefficient of variation of a log-normal distribution. A Bayesian approach is used to incorporate parameter uncertainty, and the control limits are obtained from the predictive distribution for the variance. We evaluate this control chart by examining its performance for various values of the process variance.  相似文献   

8.
In this study, a control chart is constructed to monitor multivariate Poisson count data, called the MP chart. The control limits of the MP chart are developed by an exact probability method based on the sum of defects or non conformities for each quality characteristic. Numerical examples are used to illustrate the MP chart. The MP chart is evaluated by the average run length (ARL) in simulation. The result indicates that the MP chart is more appropriate than the Shewhart-type control chart when the correlation between variables exists.  相似文献   

9.
An accurate numerical procedure is presented for computing the average run length (ARL) of an exponentially weighted moving average (EWMA) chart under a linear drift in the process mean. The performance of an EWMA chart is then evaluated under a linear drift in the mean. In processes where gradual linear drifts rather than abrupt changes in the mean model the shifts in the mean more accurately, an evaluation of the performance of an EWMA chart under a linear drift is more appropriate. Tables of optimal smoothing parameters and control chart limits are given which make the design of EWMA charts easy.  相似文献   

10.
In this paper, a new single exponentially weighted moving average (EWMA) control chart based on the weighted likelihood ratio test, referred to as the WLRT chart, is proposed for the problem of monitoring the mean and variance of a normally distributed process variable. It is easy to design, fast to compute, and quite effective for diverse cases including the detection of the decrease in variability and individual observation case. The optimal parameters that can be used as a design aid in selecting specific parameter values based on the average run length (ARL) and the sample size are provided. The in-control (IC) and out-of-control (OC) performance properties of the new chart are compared with some other existing EWMA-type charts. Our simulation results show that the IC run length distribution of the proposed chart is similar to that of a geometric distribution, and it provides quite a robust and satisfactory overall performance for detecting a wide range of shifts in the process mean and/or variability.  相似文献   

11.
Control charts have been popularly used as a user-friendly yet technically sophisticated tool to monitor whether a process is in statistical control or not. These charts are basically constructed under the normality assumption. But in many practical situations in real life this normality assumption may be violated. One such non-normal situation is to monitor the process variability from a skewed parent distribution where we propose the use of a Maxwell control chart. We introduce a pivotal quantity for the scale parameter of the Maxwell distribution which follows a gamma distribution. Probability limits and L-sigma limits are studied along with performance measure based on average run length and power curve. To avoid the complexity of future calculations for practitioners, factors for constructing control chart for monitoring the Maxwell parameter are given for different sample sizes and for different false alarm rate. We also provide simulated data to illustrate the Maxwell control chart. Finally, a real life example has been given to show the importance of such a control chart.  相似文献   

12.
The quality and loss of products are crucial factors separating competitive companies in global market. Firms widely employ a loss function to measure the loss caused by a deviation of the quality variable from the target value. Monitoring this deviation from the process target value is important from the view of Taguchi’s philosophy. In reality, there are many situations where the distribution of the quality variable may not be normal but skewed. This paper aims at developing a median loss (ML) control chart for monitoring quality loss under skewed distributions. Both the cases with fixed and variable sampling intervals are considered. Numerical results show that the ML chart with (optimal) variable sampling intervals performs better than the ML chart in detecting small to moderate shifts in the process loss centre or in the difference of mean and target and/or variance of a process variable. The ML chart and the ML chart with variable sampling intervals also illustrate the best performance in detection out-of-control process for a process quality variable with a left-skewed distribution. A numerical example illustrates the application of the proposed control chart.  相似文献   

13.
A synthetic mean square error (MSE) control chart is presented in this study for monitoring the changes in the mean and standard deviation of a normally distributed process. The synthetic MSE control chart is a combination of the standard MSE control chart and the conforming run length (CRL) control chart. From the numerical comparisons, the synthetic MSE control chart is always more efficient than the standard MSE control chart in detecting shifts in the process mean and standard deviation. The synthetic MSE chart also performs better than the exponentially weighted moving average-semicircle (EWMA-SC) chart, except for some cases where the process mean shifts are small.  相似文献   

14.
The adaptive exponentially weighted moving average (AEWMA) control chart is a smooth combination of the Shewhart and exponentially weighted moving average (EWMA) control charts. This chart was proposed by Cappizzi and Masarotto (2003) to achieve a reasonable performance for both small and large shifts. Cappizzi and Masarotto (2003) used a pair of shifts in designing their control chart. In this study, however, the process mean shift is considered as a random variable with a certain probability distribution and the AEWMA control chart is optimized for a wide range of mean shifts according to that probability distribution and not just for a pair of shifts. Using the Markov chain technique, the results show that the new optimization design can improve the performance of the AEWMA control chart from an overall point of view relative to the various designs presented by Cappizzi and Masarotto (2003). Optimal design parameters that achieve the desired in-control average run length (ARL) are computed in several cases and formulas used to find approximately their values are given. Using these formulas, the practitioner can compute the optimal design parameters corresponding to any desired in-control ARL without the need to apply the optimization procedure. The results obtained by these formulas are very promising and would particularly facilitate the design of the AEWMA control chart for any in-control ARL value.  相似文献   

15.
Quality-control charts are widely used to monitor and detect shifts in the process mean and dispersion. Abbasi and Miller [MDEWMA chart: an efficient and robust alternative to monitor process dispersion, J Stat Comput Simul 2013;83:247–268] suggested a robust mean deviation exponentially weighted moving average (MDEWMA) control chart for monitoring process dispersion under simple random sampling. In this study, an improved MDEWMA (IMDEWMA) control chart is proposed under ranked set sampling to monitor process dispersion. Detailed Monte Carlo simulations are performed from symmetric and asymmetric populations to investigate the performances of the proposed and existing control charts in terms of average run length (ARL), median run length and standard deviation of run length. An application to real-life data is also presented to illustrate the use of the IMDEWMA control chart. It is observed that the IMDEWMA control chart indicates a shift in process dispersion substantially quicker than the MDEWMA control chart, while maintaining comparable ARLs when the process is in control.  相似文献   

16.
Traditional control charts assume independence of observations obtained from the monitored process. However, if the observations are autocorrelated, these charts often do not perform as intended by the design requirements. Recently, several control charts have been proposed to deal with autocorrelated observations. The residual chart, modified Shewhart chart, EWMAST chart, and ARMA chart are such charts widely used for monitoring the occurrence of assignable causes in a process when the process exhibits inherent autocorrelation. Besides autocorrelation, one other issue is the unknown values of true process parameters to be used in the control chart design, which are often estimated from a reference sample of in-control observations. Performances of the above-mentioned control charts for autocorrelated processes are significantly affected by the sample size used in a Phase I study to estimate the control chart parameters. In this study, we investigate the effect of Phase I sample size on the run length performance of these four charts for monitoring the changes in the mean of an autocorrelated process, namely an AR(1) process. A discussion of the practical implications of the results and suggestions on the sample size requirements for effective process monitoring are provided.  相似文献   

17.
This article develops a control chart for the generalized variance. A Bayesian approach is used to incorporate parameter uncertainty. Our approach has two stages, (i) construction of the control chart where we use a predictive distribution based on a Bayesian approach to derive the rejection region, and (ii) evaluation of the control chart where we use a sampling theory approach to examine the performance of the control chart under various hypothetical specifications for the data generation model.  相似文献   

18.
The exponentially weighted moving average (EWMA) control charts are widely used in chemical and process industries because of their excellent speed in catching small to moderate shifts in the process target. In usual practice, many data come from a process where the monitoring statistic is non-normally distributed or it follows an unknown probability distribution. This necessitates the use of distribution-free/nonparametric control charts for monitoring the deviations from the process target. In this paper, we integrate the existing EWMA sign chart with the conforming run length chart to propose a new synthetic EWMA (SynEWMA) sign chart for monitoring the process mean. The SynEWMA sign chart encompasses the synthetic sign and EWMA sign charts. Monte Carlo simulations are used to compute the run length profiles of the SynEWMA sign chart. Based on a comprehensive comparison, it turns out that the SynEWMA sign chart is able to perform substantially better than the existing EWMA sign chart. Both real and simulated data sets are used to explain the working and implementation of existing and proposed control charts.  相似文献   

19.
In this paper, a new non-parametric multivariate exponentially weighted moving average (NMEWMA) sign chart is proposed for monitoring the process dispersion. The run length characteristics of the NMEWMA sign chart are computed with the help of Markov chain and Monte Carlo simulations. Moreover, the NMEWMA sign chart is also used to detect changes in the process mean and dispersion simultaneously. An illustrative example is also used to explain the implementation of proposed control chart.  相似文献   

20.
Traditionally, an X-chart is used to control the process mean and an R-chart to control the process variance. However, these charts are not sensitive to small changes in process parameters. A good alternative to these charts is the exponentially weighted moving average (EWMA) control chart for controlling the process mean and variability, which is very effective in detecting small process disturbances. In this paper, we propose a single chart that is based on the non-central chi-square statistic, which is more effective than the joint X and R charts in detecting assignable cause(s) that change the process mean and/or increase variability. It is also shown that the EWMA control chart based on a non-central chi-square statistic is more effective in detecting both increases and decreases in mean and/or variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号