首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantile regression introduced by Koenker and Bassett (1978) produces a comprehensive picture of a response variable on predictors. In this paper, we propose a general semi-parametric model of which part of predictors are presented with a single-index, to model the relationship of conditional quantiles of the response on predictors. Special cases are single-index models, partially linear single-index models and varying coefficient single-index models. We propose the qOPG, a quantile regression version of outer-product gradient estimation method (OPG, Xia et al., 2002) to estimate the single-index. Large-sample properties, simulation results and a real-data analysis are provided to examine the performance of the qOPG.  相似文献   

2.
ABSTRACT

The varying-coefficient single-index model (VCSIM) is a very general and flexible tool for exploring the relationship between a response variable and a set of predictors. Popular special cases include single-index models and varying-coefficient models. In order to estimate the index-coefficient and the non parametric varying-coefficients in the VCSIM, we propose a two-stage composite quantile regression estimation procedure, which integrates the local linear smoothing method and the information of quantile regressions at a number of conditional quantiles of the response variable. We establish the asymptotic properties of the proposed estimators for the index-coefficient and varying-coefficients when the error is heterogeneous. When compared with the existing mean-regression-based estimation method, our simulation results indicate that our proposed method has comparable performance for normal error and is more robust for error with outliers or heavy tail. We illustrate our methodologies with a real example.  相似文献   

3.
Abstract

Structured sparsity has recently been a very popular technique to deal with the high-dimensional data. In this paper, we mainly focus on the theoretical problems for the overlapping group structure of generalized linear models (GLMs). Although the overlapping group lasso method for GLMs has been widely applied in some applications, the theoretical properties about it are still unknown. Under some general conditions, we presents the oracle inequalities for the estimation and prediction error of overlapping group Lasso method in the generalized linear model setting. Then, we apply these results to the so-called Logistic and Poisson regression models. It is shown that the results of the Lasso and group Lasso procedures for GLMs can be recovered by specifying the group structures in our proposed method. The effect of overlap and the performance of variable selection of our proposed method are both studied by numerical simulations. Finally, we apply our proposed method to two gene expression data sets: the p53 data and the lung cancer data.  相似文献   

4.
ABSTRACT

In this paper, we consider the estimation problem of the parameter vector in the linear regression model with heteroscedastic errors. First, under heteroscedastic errors, we study the performance of shrinkage-type estimators and their performance as compared to theunrestricted and restricted least squares estimators. In order to accommodate the heteroscedastic structure, we generalize an identity which is useful in deriving the risk function. Thanks to the established identity, we prove that shrinkage estimators dominate the unrestricted estimator. Finally, we explore the performance of high-dimensional heteroscedastic regression estimator as compared to classical LASSO and shrinkage estimators.  相似文献   

5.
ABSTRACT

In this paper, we propose a new efficient and robust penalized estimating procedure for varying-coefficient single-index models based on modal regression and basis function approximations. The proposed procedure simultaneously solves two types of problems: separation of varying and constant effects and selection of variables with non zero coefficients for both non parametric and index components using three smoothly clipped absolute deviation (SCAD) penalties. With appropriate selection of the tuning parameters, the new method possesses the consistency in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate and the estimators of constant coefficients and index parameters have the oracle property. Finally, we investigate the finite sample performance of the proposed method through a simulation study and real data analysis.  相似文献   

6.
Estimation of the single-index model with a discontinuous unknown link function is considered in this paper. Existed refined minimum average variance estimation (rMAVE) method can estimate the single-index parameter and unknown link function simultaneously by minimising the average pointwise conditional variance, where the conditional variance can be estimated using the local linear fit method with centred kernel function. When there are jumps in the link function, big biases around jumps can appear. For this reason, we embed the jump-preserving technique in the rMAVE method, then propose an adaptive jump-preserving estimation procedure for the single-index model. Concretely speaking, the conditional variance is obtained by the one among local linear fits with centred, left-sided and right-sided kernel functions who has minimum weighted residual mean squares. The resulting estimators can preserve the jumps well and also give smooth estimates of the continuity parts. Asymptotic properties are established under some mild conditions. Simulations and real data analysis show the proposed method works well.  相似文献   

7.
ABSTRACT

The estimation of variance function plays an extremely important role in statistical inference of the regression models. In this paper we propose a variance modelling method for constructing the variance structure via combining the exponential polynomial modelling method and the kernel smoothing technique. A simple estimation method for the parameters in heteroscedastic linear regression models is developed when the covariance matrix is unknown diagonal and the variance function is a positive function of the mean. The consistency and asymptotic normality of the resulting estimators are established under some mild assumptions. In particular, a simple version of bootstrap test is adapted to test misspecification of the variance function. Some Monte Carlo simulation studies are carried out to examine the finite sample performance of the proposed methods. Finally, the methodologies are illustrated by the ozone concentration dataset.  相似文献   

8.
Abstract

Nonparametric regression is a standard statistical tool with increased importance in the Big Data era. Boundary points pose additional difficulties but local polynomial regression can be used to alleviate them. Local linear regression, for example, is easy to implement and performs quite well both at interior and boundary points. Estimating the conditional distribution function and/or the quantile function at a given regressor point is immediate via standard kernel methods but problems ensue if local linear methods are to be used. In particular, the distribution function estimator is not guaranteed to be monotone increasing, and the quantile curves can “cross.” In the article at hand, a simple method of correcting the local linear distribution estimator for monotonicity is proposed, and its good performance is demonstrated via simulations and real data examples. Supplementary materials for this article are available online.  相似文献   

9.
Partially linear regression models are semiparametric models that contain both linear and nonlinear components. They are extensively used in many scientific fields for their flexibility and convenient interpretability. In such analyses, testing the significance of the regression coefficients in the linear component is typically a key focus. Under the high-dimensional setting, i.e., “large p, small n,” the conventional F-test strategy does not apply because the coefficients need to be estimated through regularization techniques. In this article, we develop a new test using a U-statistic of order two, relying on a pseudo-estimate of the nonlinear component from the classical kernel method. Using the martingale central limit theorem, we prove the asymptotic normality of the proposed test statistic under some regularity conditions. We further demonstrate our proposed test's finite-sample performance by simulation studies and by analyzing some breast cancer gene expression data.  相似文献   

10.
Abstract

This paper is focused on kernel estimation of the gradient of a multivariate regression function. Despite the importance of this topic, the progress in this area is rather slow. Our aim is to construct a gradient estimator using the idea of local linear estimator for a regression function. The quality of this estimator is expressed in terms of the Mean Integrated Square Error. We focus on a choice of bandwidth matrix. Further, we present some data-driven methods for its choice and develop a new approach. The performance of presented methods is illustrated using a simulation study and real data example.  相似文献   

11.
In this article, the partially linear single-index models are discussed based on smoothing spline and average derivative estimation method. This proposed technique consists of two stages: one is to estimate the vector parameter in the linear part using the smoothing cubic spline method, simultaneously, obtaining the estimator of unknown single-index function; the other is to estimate the single-index coefficients in the single-index part by the using average derivative estimator procedure. Some simulated and real examples are presented to illustrate the performance of this method.  相似文献   

12.
In this paper, we extend the composite quantile regression (CQR) method to a single-index model. The unknown link function is estimated by local composite quantile regression and the parametric index is estimated through the linear composite quantile. It is shown that the proposed estimators are consistent and asymptotically normal. The simulation studies and real data applications are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

13.
Abstract

Semi-functional linear regression models are important in practice. In this paper, their estimation is discussed when function-valued and real-valued random variables are all measured with additive error. By means of functional principal component analysis and kernel smoothing techniques, the estimators of the slope function and the non parametric component are obtained. To account for errors in variables, deconvolution is involved in the construction of a new class of kernel estimators. The convergence rates of the estimators of the unknown slope function and non parametric component are established under suitable norm and conditions. Simulation studies are conducted to illustrate the finite sample performance of our method.  相似文献   

14.
In this paper, we are concerned with a test for the index parameter and index function in the single-index model. Based on the estimates obtained by the quantile regression, we extend the generalized analysis-of-variance-type test to the single-index model. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows an asymptotically χ2-distribution. The simulation studies and real data applications are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

15.
In this paper, we introduce a partially linear single-index additive hazards model with current status data. Both the unknown link function of the single-index term and the cumulative baseline hazard function are approximated by B-splines under a monotonicity constraint on the latter. The sieve method is applied to estimate the nonparametric and parametric components simultaneously. We show that, when the nonparametric link function is an exact B-spline, the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound and the rate of convergence of the estimator for the cumulative baseline hazard function is optimal. Simulation studies are presented to examine the finite sample performance of the proposed estimation method. For illustration, we apply the method to a clinical dataset with current status outcome.  相似文献   

16.
This article considers partially linear single-index models with errors in all variables. By using the Pseudo ? θ method (Liang, Härdle, and Carroll 1999), local linear regression and simulation-extrapolation (SIMEX) technique (Cook and Stefanski 1994), we propose an efficient methodology to estimate the current model. Under certain conditions the asymptotic properties of proposed estimators are obtained. Some simulation experiments and an application are conducted to illustrate our proposed method.  相似文献   

17.
ABSTRACT

We consider the estimation of the conditional cumulative distribution function of a scalar response variable Y given a Hilbertian random variable X when the observations are linked via a single-index structure. We establish the pointwise and the uniform almost complete convergence (with the rate) of the kernel estimate of this model. As an application, we show how our result can be applied in the prediction problem via the conditional median estimate. Also, the choice of the functional index via the cross-validation procedure is also discussed but not attacked.  相似文献   

18.
We consider a semiparametric method based on partial splines for estimating the unknown function and partially linear regression parameters in partially linear single-index models. Three methods—project pursuit regression (PPR), average derivative estimation (ADE), and a boosting method—are considered for estimating the single-index parameters. Simulations revealed that PPR with partial splines was superior in estimating single-index parameters, while the boosting method with partial splines performed no better than PPR and ADE. All three methods performed similarly in estimating the partially linear regression parameters. The relative performances of the methods are also illustrated using a real-world data example.  相似文献   

19.
This paper considers semiparametric partially linear single-index model with missing responses at random. Imputation approach is developed to estimate the regression coefficients, single-index coefficients and the nonparametric function, respectively. The imputation estimators for the regression coefficients and single-index coefficients are obtained by a stepwise approach. These estimators are shown to be asymptotically normal, and the estimator for the nonparametric function is proved to be asymptotically normal at any fixed point. The bandwidth problem is also considered in this paper, a delete-one cross validation method is used to select the optimal bandwidth. A simulation study is conducted to evaluate the proposed methods.  相似文献   

20.
Abstract

We consider statistical inference for additive partial linear models when the linear covariate is measured with error. A bias-corrected spline-backfitted kernel smoothing method is proposed. Under mild assumptions, the proposed component function and parameter estimator are oracally efficient and fast to compute. The nonparametric function estimator’s pointwise distribution is asymptotically equivalent to an function estimator in partial linear model. Finite-sample performance of the proposed estimators is assessed by simulation experiments. The proposed methods are applied to Boston house data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号