首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the location-scale estimation problem, we study robustness properties of M-estimators of the scale parameter under unknown ?-contamination of a fixed symmetric unimodal error distribution F0. Within a general class of M-estimators, the estimator with minimax asymptotic bias is shown to lie within the subclass of α-interquantile ranges of the empirical distribution symmetrized about the sample median. Our main result is that as ? → 0, the limiting minimax asymptotic bias estimator is sometimes (e.g., when Fo is Cauchy), but not always, the median absolute deviation about the median. It is also shown that contamination in the neighbourhood of a discontinuity of the influence function of a minimax bias estimator can sometimes inflate the asymptotic variance beyond that achieved by placing all the ?-contamination at infinity. This effect is quantified by a new notion of asymptotic efficiency that takes into account the effect of infinitesimal contamination of the parametric model for the error distribution.  相似文献   

2.
John R. Collins 《Statistics》2013,47(4):287-304

We derive optimal bias-robust L-estimators of a scale parameter σ based on random samples from F(( ·?θ/σ), where θ and σ are unknown and F is an unknown member of a ε-contaminated neighborhood of a fixed symmetric error distribution F 0. Within a very general class S of L-estimators which are Fisher-consistent at F, we solve for: (i) the estimator with minimax asymptotic bias over the ε-contamination neighborhood; and (ii) the estimator with minimum gross error sensitivity at F 0 [the limiting case of (i) as ε → 0]. The solutions to problems (i) and (ii) are shown, using a generalized method of moment spaces, to be mixtures of at most two interquantile ranges. A graphical method is presented for finding the optimal bias-robust solutions, and examples are given.  相似文献   

3.
Robust nonparametric estimators for additive regression or autoregression models under an α-mixing condition are proposed. They are based on local M-estimators or local medians with kernel weights, and their asymptotic behaviour is studied. Moreover, diese local M-estimators achieve the same univariate rate of convergence as their linear relatives.  相似文献   

4.
When the data contain outliers or come from population with heavy-tailed distributions, which appear very often in spatiotemporal data, the estimation methods based on least-squares (L2) method will not perform well. More robust estimation methods are required. In this article, we propose the local linear estimation for spatiotemporal models based on least absolute deviation (L1) and drive the asymptotic distributions of the L1-estimators under some mild conditions imposed on the spatiotemporal process. The simulation results for two examples, with outliers and heavy-tailed distribution, respectively, show that the L1-estimators perform better than the L2-estimators.  相似文献   

5.
Qingguo Tang 《Statistics》2013,47(5):389-404
The varying coefficient model is a useful extension of linear models and has many advantages in practical use. To estimate the unknown functions in the model, the kernel type with local linear least-squares (L 2) estimation methods has been proposed by several authors. When the data contain outliers or come from population with heavy-tailed distributions, L 1-estimation should yield better estimators. In this article, we present the local linear L 1-estimation method and derive the asymptotic distributions of the L 1-estimators. The simulation results for two examples, with outliers and heavy-tailed distribution, respectively, show that the L 1-estimators outperform the L 2-estimators.  相似文献   

6.
We study robustness properties of two types of M-estimators of scale when both location and scale parameters are unknown: (i) the scale estimator arising from simultaneous M-estimation of location and scale; and (ii) its symmetrization about the sample median. The robustness criteria considered are maximal asymptotic bias and maximal asymptotic variance when the known symmetric unimodal error distribution is subject to unknown, possibly asymmetric, £-con-tamination. Influence functions and asymptotic variance functionals are derived, and computations of asymptotic biases and variances, under the normal distribution with ε-contamination at oo, are presented for the special subclass arising from Huber's Proposal 2 and its symmetrized version. Symmetrization is seen to reduce both asymptotic bias and variance. Some complementary theoretical results are obtained, and the tradeoff between asymptotic bias and variance is discussed.  相似文献   

7.
Asymptotic properties of M-estimators with complete data are investigated extensively. In the presence of missing data, however, the standard inference procedures for complete data cannot be applied directly. In this article, the inverse probability weighted method is applied to missing response problem to define M-estimators. The existence of M-estimators is established under very general regularity conditions. Consistency and asymptotic normality of the M-estimators are proved, respectively. An iterative algorithm is applied to calculating the M-estimators. It is shown that one step iteration suffices and the resulting one-step M-estimate has the same limit distribution as in the fully iterated M-estimators.  相似文献   

8.
We consider the properties of the trimmed mean, as regards minimax-variance L-estimation of a location parameter in a Kolmogorov neighbourhood K() of the normal distribution: We first review some results on the search for an L-minimax estimator in this neighbourhood, i.e. a linear combination of order statistics whose maximum variance in Kt() is a minimum in the class of L-estimators. The natural candidate – the L-estimate which is efficient for that member of Kt,() with minimum Fisher information – is known not to be a saddlepoint solution to the minimax problem. We show here that it is not a solution at all. We do this by showing that a smaller maximum variance is attained by an appropriately trimmed mean. We argue that this trimmed mean, as well as being computationally simple – much simpler than the efficient L-estimate referred to above, and simpler than the minimax M- and R-estimators – is at least “nearly” minimax.  相似文献   

9.
We consider the problem of minimax-variance, robust estimation of a location parameter, through the use of L- and R-estimators. We derive an easily checked necessary condition for L-estimation to be minimax, and a related sufficient condition for R-estimation to be minimax. Those cases in the literature in which L-estimation is known not to be minimax, and those in which R-estimation is minimax, are derived as consequences of these conditions. New classes of examples are given in each case. As well, we answer a question of Scholz (1974), who showed essentially that the asymptotic variance of an R-estimator never exceeds that of an L-estimator, if both are efficient at the same strongly unimodal distribution. Scholz raised the question of whether or not the assumption of strong unimodality could be dropped. We answer this question in the negative, theoretically and by examples. In the examples, the minimax property fails both for L-estimation and for R-estimation, but the variance of the L-estimator, as the distribution of the observation varies over the given neighbourhood, remains unbounded. That of the R-estimator is unbounded.  相似文献   

10.
The efficiency of an estimator depends heavily on the tails of the distribution of the observations. Several partial orders have been defined to compare probability distributions according to their tails. In this paper we show that the asymptotic relative efficiency of two L-estimators with monotone weight functions is isotonic with respect to the partial orders defined by van Zwet (1964) and Lawrence (1975). We also give results concerning trimmed means.  相似文献   

11.
We discuss the robustness and asymptotic behaviour of τ-estimators for multivariate location and scatter. We show that τ-estimators correspond to multivariate M-estimators defined by a weighted average of redescending ψ-functions, where the weights are adaptive. We prove consistency and asymptotic normality under weak assumptions on the underlying distribution, show that τ-estimators have a high breakdown point, and obtain the influence function at general distributions. In the special case of a location-scatter family, τ-estimators are asymptotically equivalent to multivariate S-estimators defined by means of a weighted ψ-function. This enables us to combine a high breakdown point and bounded influence with good asymptotic efficiency for the location and covariance estimator.  相似文献   

12.
We describe a method of calculating sharp lower and upper bounds on the expectations of arbitrary, properly centered L-statistics expressed in the Gini mean difference units of the original i.i.d. observations. Precise values of bounds are derived for the single-order statistics, their differences, and some examples of L-estimators. We also present the families of discrete distributions which attain the bounds, possibly in the limit.  相似文献   

13.
Several methods have been suggested to calculate robust M- and G-M -estimators of the regression parameter β and of the error scale parameter σ in a linear model. This paper shows that, for some data sets well known in robust statistics, the nonlinear systems of equations for the simultaneous estimation of β, with an M-estimate with a redescending ψ-function, and σ, with the residual median absolute deviation (MAD), have many solutions. This multiplicity is not caused by the possible lack of uniqueness, for redescending ψ-functions, of the solutions of the system defining β with known σ; rather, the simultaneous estimation of β and σ together creates the problem. A way to avoid these multiple solutions is to proceed in two steps. First take σ as the median absolute deviation of the residuals for a uniquely defined robust M-estimate such as Huber's Proposal 2 or the L1-estimate. Then solve the nonlinear system for the M-estimate with σ equal to the value obtained at the first step to get the estimate of β. Analytical conditions for the uniqueness of M and G-M-estimates are also given.  相似文献   

14.
We consider the asymptotic behaviour of L1 -estimators in a linear regression under a very general form of heteroscedasticity. The limiting distributions of the estimators are derived under standard conditions on the design. We also consider the asymptotic behaviour of the bootstrap in the heteroscedastic model and show that it is consistent to first order only if the limiting distribution is normal.  相似文献   

15.
We study the asymptotics of Lp-estimators, p>0, as estimates of a parameter of location for data coming for a symmetric density with an infinity cusp at the center of symmetry of the distribution. In this situation, the data are more concentrated around the parameter of location than in usual cases. The maximum-likelihood estimator is not defined. The rates of convergence of the Lp-estimators in this situation depend on p and on the shape of the density. For some densities and small values of p, the Lp-estimator converges with a fast rate of convergence.  相似文献   

16.
17.
In adaptive estimation, it is often considered that an estimator has made a mistake if the component estimator chosen for use is not the most efficient for the distribution sampled. Theoretical and simulation results point to a fallacy in this line of thought. The Monte Carlo study involves extension of the Princeton Swindle to distributions conditional on a location and scale-free statistic, and to the uniform. The results give a partial explanation for the sometimes surprising robustness of adaptive L-estimators.  相似文献   

18.
In this article, we introduce the nonparametric kernel method starting with half-normal detection function using line transect sampling. The new method improves bias from O(h 2), as the smoothing parameter h → 0, to O(h 3) and in some cases to O(h 4). Properties of the proposed estimator are derived and an expression for the asymptotic mean square error (AMSE) of the estimator is given. Minimization of the AMSE leads to an explicit formula for an optimal choice of the smoothing parameter. Small-sample properties of the estimator are investigated and compared with the traditional kernel estimator by using simulation technique. A numerical results show that improvements over the traditional kernel estimator often can be realized even when the true detection function is far from the half-normal detection function.  相似文献   

19.
For ergodic ARCH processes, we introduce a one-parameter family of Lp-estimators. The construction is based on the concept of weighted M-estimators. Under weak assumptions on the error distribution, the consistency is established. The asymptotic normality is proved for the special cases p=1 and 2. To prove the asymptotic normality of the L1-estimator, one needs the existence of a density of the squares of the errors, whereas for the L2-estimator the existence of fourth moments is assumed. The asymptotic covariance matrix of the estimator depends on the unknown parameter which can be substituted by consistent estimators. For the L1-estimator we construct a kernel estimator for the unknown density of the square of the errors.  相似文献   

20.
To perform regression analysis in high dimensions, lasso or ridge estimation are a common choice. However, it has been shown that these methods are not robust to outliers. Therefore, alternatives as penalized M-estimation or the sparse least trimmed squares (LTS) estimator have been proposed. The robustness of these regression methods can be measured with the influence function. It quantifies the effect of infinitesimal perturbations in the data. Furthermore, it can be used to compute the asymptotic variance and the mean-squared error (MSE). In this paper we compute the influence function, the asymptotic variance and the MSE for penalized M-estimators and the sparse LTS estimator. The asymptotic biasedness of the estimators make the calculations non-standard. We show that only M-estimators with a loss function with a bounded derivative are robust against regression outliers. In particular, the lasso has an unbounded influence function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号