首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given any generalized inverse (X'X)? appropriate to normal equations X'Xb 0 = X'y for the linear model y = Xb + e, a procedure is given for obtaining from it a generalized inverse appropriate to a restricted model having restrictions P'b = 0 for P'b nonestimable.  相似文献   

2.
Following the paper by Genton and Loperfido [Generalized skew-elliptical distributions and their quadratic forms, Ann. Inst. Statist. Math. 57 (2005), pp. 389–401], we say that Z has a generalized skew-normal distribution, if its probability density function (p.d.f.) is given by f(z)=2φ p (z; ξ, Ω)π (z?ξ), z∈? p , where φ p (·; ξ, Ω) is the p-dimensional normal p.d.f. with location vector ξ and scale matrix Ω, ξ∈? p , Ω>0, and π is a skewing function from ? p to ?, that is 0≤π (z)≤1 and π (?z)=1?π (z), ? z∈? p . First the distribution of linear transformations of Z are studied, and some moments of Z and its quadratic forms are derived. Next we obtain the joint moment-generating functions (m.g.f.’s) of linear and quadratic forms of Z and then investigate conditions for their independence. Finally explicit forms for the above distributions, m.g.f.’s and moments are derived when π (z)=κ (αz), where α∈? p and κ is the normal, Laplace, logistic or uniform distribution function.  相似文献   

3.
Xu-Qing Liu 《Statistics》2013,47(6):525-541
For a finite population and the resulting linear model Y=+e, the problem of the optimal invariant quadratic predictors including optimal invariant quadratic unbiased predictor and optimal invariant quadratic (potentially) biased predictor for the population quadratic quantities, f(H)=Y′HY , is of interest and has been previously considered in the literature for the case of HX=0. However, the special case does not contain all of situations at all. So, predicting f(H) in general situations may be of particular interest. In this paper, we make an effort to investigate how to offer a good predictor for f(H), not restricted yet to the mentioned case. Permutation matrix techniques play an important role in handling the process. The expected predictors are finally derived. In addition, we mention that the resulting predictors can be viewed as acceptable in all situations.  相似文献   

4.
In the context of the general linear model Y=Xβ+ε, the matrix Pz =Z(ZTZ)?1 ZT , where Z=(X: Y), plays an important role in determining least squares results. In this article we propose two graphical displays for the off-diagonal as well as the diagonal elements of PZ . The two graphs are based on simple ideas and are useful in the detection of potentially influential subsets of observations in regression. Since PZ is invariant with respect to permutations of the columns of Z, an added advantage of these graphs is that they can be used to detect outliers in multivariate data where the rows of Z are usually regarded as a random sample from a multivariate population. We also suggest two calibration points, one for the diagonal elements of PZ and the other for the off-diagonal elements. The advantage of these calibration points is that they take into consideration the variability of the off-diagonal as well as the diagonal elements of PZ . They also do not suffer from masking.  相似文献   

5.
This article proposes a multivariate control chart, the syn-|S| chart, which comprises a standard |S| subchart and a multivariate synthetic sample generalized variance |S| (synthetic |S|) subchart, for detecting shifts in the covariance matrix of a multivariate normally distributed process. A procedure for the optimal design of the syn-|S| chart by minimizing the average extra quadratic loss is provided. The syn-|S| chart has better overall performance compared to the synthetic |S| chart and the standard |S| chart, based on the zero-state and steady-state modes. An example is given to illustrate the operation of the synthetic |S| chart.  相似文献   

6.
For the regression model y=X β+ε where the errors follow the elliptically contoured distribution, we consider the least squares, restricted least squares, preliminary test, Stein-type shrinkage and positive-rule shrinkage estimators for the regression parameters, β.

We compare the quadratic risks of the estimators to determine the relative dominance properties of the five estimators.  相似文献   

7.
8.
In this article, we study Bayesian estimation for the covariance matrix Σ and the precision matrix Ω (the inverse of the covariance matrix) in the star-shaped model with missing data. Based on a Cholesky-type decomposition of the precision matrix Ω = ΨΨ, where Ψ is a lower triangular matrix with positive diagonal elements, we develop the Jeffreys prior and a reference prior for Ψ. We then introduce a class of priors for Ψ, which includes the invariant Haar measures, Jeffreys prior, and reference prior. The posterior properties are discussed and the closed-form expressions for Bayesian estimators for the covariance matrix Σ and the precision matrix Ω are derived under the Stein loss, entropy loss, and symmetric loss. Some simulation results are given for illustration.  相似文献   

9.
A semi-Markovian random walk process (X(t)) with a generalized beta distribution of chance is considered. The asymptotic expansions for the first four moments of the ergodic distribution of the process are obtained as E(ζn) → ∞ when the random variable ζn has a generalized beta distribution with parameters (s, S, α, β); , β > 1,?0? ? s < S < ∞. Finally, the accuracy of the asymptotic expansions is examined by using the Monte Carlo simulation method.  相似文献   

10.
In this paper, the notion of the improved ridge estimator (IRE) is put forward in the linear regression model y=X β+e. The problem arises if augmenting the equation 0=cα+ε instead of 0=C α+? to the model. Three special IREs are considered and studied under the mean-squared error criterion and the prediction error sum of squares criterion. The simulations demonstrate that the proposed estimators are effective and recommendable, especially when multicollinearity is severe.  相似文献   

11.
The multivariate synthetic generalized sample variance |S| (synthetic |S|) chart is a combination of the |S| sub-chart and the conforming run length sub-chart. A procedure for optimal designs of the synthetic |S| chart, based on the median run length (MRL), for both zero and steady-state modes are provided by minimizing the out-of-control MRL. The comparative results show that the synthetic |S| chart performs better than the standard |S| chart for detecting shifts in the covariance matrix of a multivariate normally distributed process, in terms of the MRL. An example is given to illustrate the operation of the synthetic |S| chart.  相似文献   

12.
《统计学通讯:理论与方法》2012,41(13-14):2405-2418
In this article, we consider two linear models, ?1 = {y, X β, V 1} and ?2 = {y, X β, V 2}, which differ only in their covariance matrices. Our main focus lies on the difference of the best linear unbiased estimators, BLUEs, of X β under these models. The corresponding problems between the models {y, X β, I n } and {y, X β, V}, i.e., between the OLSE (ordinary least squares estimator) and BLUE, are pretty well studied. Our purpose is to review the corresponding considerations between the BLUEs of X β under ?1 and ?2. This article is an expository one presenting also new results.  相似文献   

13.
Abstract

In this short note, a very simple proof of the Chebyshev's inequality for random vectors is given. This inequality provides a lower bound for the percentage of the population of an arbitrary random vector X with finite mean μ = E(X) and a positive definite covariance matrix V = Cov(X) whose Mahalanobis distance with respect to V to the mean μ is less than a fixed value. The main advantage of the proof is that it is a simple exercise for a first year probability course. An alternative proof based on principal components is also provided. This proof can be used to study the case of a singular covariance matrix V.  相似文献   

14.
This paper presents a methodology for model fitting and inference in the context of Bayesian models of the type f(Y | X,θ)f(X|θ)f(θ), where Y is the (set of) observed data, θ is a set of model parameters and X is an unobserved (latent) stationary stochastic process induced by the first order transition model f(X (t+1)|X (t),θ), where X (t) denotes the state of the process at time (or generation) t. The crucial feature of the above type of model is that, given θ, the transition model f(X (t+1)|X (t),θ) is known but the distribution of the stochastic process in equilibrium, that is f(X|θ), is, except in very special cases, intractable, hence unknown. A further point to note is that the data Y has been assumed to be observed when the underlying process is in equilibrium. In other words, the data is not collected dynamically over time. We refer to such specification as a latent equilibrium process (LEP) model. It is motivated by problems in population genetics (though other applications are discussed), where it is of interest to learn about parameters such as mutation and migration rates and population sizes, given a sample of allele frequencies at one or more loci. In such problems it is natural to assume that the distribution of the observed allele frequencies depends on the true (unobserved) population allele frequencies, whereas the distribution of the true allele frequencies is only indirectly specified through a transition model. As a hierarchical specification, it is natural to fit the LEP within a Bayesian framework. Fitting such models is usually done via Markov chain Monte Carlo (MCMC). However, we demonstrate that, in the case of LEP models, implementation of MCMC is far from straightforward. The main contribution of this paper is to provide a methodology to implement MCMC for LEP models. We demonstrate our approach in population genetics problems with both simulated and real data sets. The resultant model fitting is computationally intensive and thus, we also discuss parallel implementation of the procedure in special cases.  相似文献   

15.
《统计学通讯:理论与方法》2012,41(13-14):2588-2601
In the investigation of the restricted linear model ? r  = {y, X β | A β = b, σ2 Σ}, the parameter constraints A β = b are often handled by transforming the model into certain implicitly restricted model. Any estimation derived from the explicitly and implicitly restricted models on the vector β and its functions should be equivalent, although the expressions of the estimation under the two models may be different. However, people more likely want to directly compare different expressions of estimations and yield a conclusion on their equivalence by using some algebraic operations on expressions of estimations. In this article, we give some results on equivalence of the well-known OLSEs and BLUEs under the explicitly and implicitly restricted linear models by using some expansion formulas for ranks of matrices.  相似文献   

16.
A characterization of the distribution of the multivariate quadratic form given by X A X′, where X is a p × n normally distributed matrix and A is an n × n symmetric real matrix, is presented. We show that the distribution of the quadratic form is the same as the distribution of a weighted sum of non central Wishart distributed matrices. This is applied to derive the distribution of the sample covariance between the rows of X when the expectation is the same for every column and is estimated with the regular mean.  相似文献   

17.
《随机性模型》2013,29(2):157-190
In this paper, we establish an explicit form of matrix decompositions for the queue length distributions of the MAP/G/1 queues under multiple and single vacations with N-policy. We show that the vector generating function Y (z) of the queue length at an arbitrary time and X (z) at departures are decomposed into Y (z) = p idle (z Y (z) and X (z) = p idle (z X (z) where p idle (z) is the vector generating function of the queue length at an arbitrary epoch at which the server is not in service, and ζ Y (z) and ζ X (z) are unidentified matrix generating functions.  相似文献   

18.
B. Chandrasekar 《Statistics》2013,47(2):161-165
Assuming that the random vectors X 1 and X 2 have independent bivariate Poisson distributions, the conditional distribution of X 1 given X 1?+?X 2?=?n is obtained. The conditional distribution turns out to be a finite mixture of distributions involving univariate binomial distributions and the mixing proportions are based on a bivariate Poisson (BVP) distribution. The result is used to establish two properties of a bivariate Poisson stochastic process which are the bivariate extensions of the properties for a Poisson process given by Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, Academic Press, New York.  相似文献   

19.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

20.
LetX andY be two random variables with finite expectationsE X andE Y, respectively. ThenX is said to be smaller thanY in the dilation order ifE[ϕ(X-E X)]≤E[ϕ(Y-E Y)] for any convex functionϕ for which the expectations exist. In this paper we obtain a new characterization of the dilation order. This characterization enables us to give new interpretations to the dilation order, and using them we identify conditions which imply the dilation order. A sample of applications of the new characterization is given. Partially supported by MURST 40% Program on Non-Linear Systems and Applications. Partially supported by “Gruppo Nazionale per l'Analisi Funzionale e sue Applicazioni”—CNR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号