首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generalizing lifetime distributions is always precious for applied statisticians. In this paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by compounding EPL and geometric distributions. The new distribution arises in a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing, increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It contains several lifetime distributions as particular cases: EPL, new generalized Lindley, generalized Lindley, power Lindley and Lindley geometric distributions. We derive several properties of the new distribution such as closed-form expressions for the density, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Simulation studies are also provided. Finally, two real data applications are given for showing the flexibility and potentiality of the new distribution.  相似文献   

2.
In this paper, we proposed a new family of distributions namely exponentiated exponential–geometric (E2G) distribution. The E2G distribution is a straightforwardly generalization of the exponential–geometric (EG) distribution proposed by Adamidis and Loukas [A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42], which accommodates increasing, decreasing and unimodal hazard functions. It arises on a latent competing risk scenarios, where the lifetime associated with a particular risk is not observable but only the minimum lifetime value among all risks. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its survival and hazard functions, moments, rth moment of the ith order statistic, mean residual lifetime and modal value. Maximum-likelihood inference is implemented straightforwardly. From a mis-specification simulation study performed in order to assess the extent of the mis-specification errors when testing the EG distribution against the E2G, and we observed that it is usually possible to discriminate between both distributions even for moderate samples with presence of censoring. The practical importance of the new distribution was demonstrated in three applications where we compare the E2G distribution with several lifetime distributions.  相似文献   

3.
A new four-parameter distribution called the exponentiated power Lindley–Poisson distribution which is an extension of the power Lindley and Lindley–Poisson distributions is introduced. Statistical properties of the distribution including the shapes of the density and hazard functions, moments, entropy measures, and distribution of order statistics are given. Maximum likelihood estimation technique is used to estimate the parameters. A simulation study is conducted to examine the bias, mean square error of the maximum likelihood estimators, and width of the confidence interval for each parameter. Finally, applications to real data sets are presented to illustrate the usefulness of the proposed distribution.  相似文献   

4.
ABSTRACT

Hazard rate functions are often used in modeling of lifetime data. The Exponential Power Series (EPS) family has a monotone hazard rate function. In this article, the influence of input factors such as time and parameters on the variability of hazard rate function is assessed by local and global sensitivity analysis. Two different indices based on local and global sensitivity indices are presented. The simulation results for two datasets show that the hazard rate functions of the EPS family are sensitive to input parameters. The results also show that the hazard rate function of the EPS family is more sensitive to the exponential distribution than power series distributions.  相似文献   

5.
In this study, classical and Bayesian inference methods are introduced to analyze lifetime data sets in the presence of left censoring considering two generalizations of the Lindley distribution: a first generalization proposed by Ghitany et al. [Power Lindley distribution and associated inference, Comput. Statist. Data Anal. 64 (2013), pp. 20–33], denoted as a power Lindley distribution and a second generalization proposed by Sharma et al. [The inverse Lindley distribution: A stress–strength reliability model with application to head and neck cancer data, J. Ind. Prod. Eng. 32 (2015), pp. 162–173], denoted as an inverse Lindley distribution. In our approach, we have used a distribution obtained from these two generalizations denoted as an inverse power Lindley distribution. A numerical illustration is presented considering a dataset of thyroglobulin levels present in a group of individuals with differentiated cancer of thyroid.  相似文献   

6.
Abstract

In this paper, we establish that the usual stochastic, hazard rate, reversed hazard rate, likelihood ratio, dispersive and star orders are all preserved for parallel systems under exponentiated models for lifetimes of components. We then use the multiple-outlier exponentiated gamma models to illustrate this result. Finally, we consider the dual family with exponentiated survival function and establish similar results for series systems. The results established here extend some well-known results for series and parallel systems arising from different exponentiated distributions such as generalized exponential and exponentiated Weibull, established previously in the literature.  相似文献   

7.
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827–842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data.  相似文献   

8.
Many distributions have been used as lifetime models. In this article, we propose a new three-parameter Weibull–Pareto distribution, which can produce the most important hazard rate shapes, namely, constant, increasing, decreasing, bathtub, and upsidedown bathtub. Various structural properties of the new distribution are derived including explicit expressions for the moments and incomplete moments, Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, and generating and quantile functions. The Rényi and q entropies are also derived. We obtain the density function of the order statistics and their moments. The model parameters are estimated by maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of two real datasets on Wheaton river flood and bladder cancer. In the two applications, the new model provides better fits than the Kumaraswamy–Pareto, beta-exponentiated Pareto, beta-Pareto, exponentiated Pareto, and Pareto models.  相似文献   

9.
We introduce and study the so-called Kumaraswamy generalized gamma distribution that is capable of modeling bathtub-shaped hazard rate functions. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a large number of well-known lifetime special sub-models such as the exponentiated generalized gamma, exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma, generalized Rayleigh, among others. Some structural properties of the new distribution are studied. We obtain two infinite sum representations for the moments and an expansion for the generating function. We calculate the density function of the order statistics and an expansion for their moments. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The usefulness of the new distribution is illustrated in two real data sets.  相似文献   

10.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

11.
In this article, we deal with a two-parameter exponentiated half-logistic distribution. We consider the estimation of unknown parameters, the associated reliability function and the hazard rate function under progressive Type II censoring. Maximum likelihood estimates (M LEs) are proposed for unknown quantities. Bayes estimates are derived with respect to squared error, linex and entropy loss functions. Approximate explicit expressions for all Bayes estimates are obtained using the Lindley method. We also use importance sampling scheme to compute the Bayes estimates. Markov Chain Monte Carlo samples are further used to produce credible intervals for the unknown parameters. Asymptotic confidence intervals are constructed using the normality property of the MLEs. For comparison purposes, bootstrap-p and bootstrap-t confidence intervals are also constructed. A comprehensive numerical study is performed to compare the proposed estimates. Finally, a real-life data set is analysed to illustrate the proposed methods of estimation.  相似文献   

12.
Several probability distributions have been proposed in the literature, especially with the aim of obtaining models that are more flexible relative to the behaviors of the density and hazard rate functions. Recently, two generalizations of the Lindley distribution were proposed in the literature: the power Lindley distribution and the inverse Lindley distribution. In this article, a distribution is obtained from these two generalizations and named as inverse power Lindley distribution. Some properties of this distribution and study of the behavior of maximum likelihood estimators are presented and discussed. It is also applied considering two real datasets and compared with the fits obtained for already-known distributions. When applied, the inverse power Lindley distribution was found to be a good alternative for modeling survival data.  相似文献   

13.
ABSTRACT

The log-logistic distribution is commonly used to model lifetime data. We propose a wider distribution, named the exponentiated log-logistic geometric distribution, based on a double activation approach. We obtain the quantile function, ordinary moments, and generating function. The method of maximum likelihood is used to estimate the model parameters. We propose a new extended regression model based on the logarithm of the exponentiated log-logistic geometric distribution. This regression model can be very useful in the analysis of real data and could provide better fits than other special regression models. The potentiality of the new models is illustrated by means of two applications to real lifetime data sets.  相似文献   

14.
Mudholkar and Srivastava [1993. Exponentiated Weibull family for analyzing bathtub failure data. IEEE Trans. Reliability 42, 299–302] introduced three-parameter exponentiated Weibull distribution. Two-parameter exponentiated exponential or generalized exponential distribution is a particular member of the exponentiated Weibull distribution. Generalized exponential distribution has a right skewed unimodal density function and monotone hazard function similar to the density functions and hazard functions of the gamma and Weibull distributions. It is observed that it can be used quite effectively to analyze lifetime data in place of gamma, Weibull and log-normal distributions. The genesis of this model, several properties, different estimation procedures and their properties, estimation of the stress-strength parameter, closeness of this distribution to some of the well-known distribution functions are discussed in this article.  相似文献   

15.
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.  相似文献   

16.
In the past few years, the Lindley distribution has gained popularity for modeling lifetime data as an alternative to the exponential distribution. This paper provides two new characterizations of the Lindley distribution. The first characterization is based on a relation between left truncated moments and failure rate function. The second characterization is based on a relation between right truncated moments and reversed failure rate function.  相似文献   

17.
A new four-parameter class of generalized Lindley (GL) distribution called the beta-generalized Lindley (BGL) distribution is proposed. This class of distributions contains the beta-Lindley, GL and Lindley distributions as special cases. Expansion of the density of the BGL distribution is obtained. The properties of these distributions, including hazard function, reverse hazard function, monotonicity property, shapes, moments, reliability, mean deviations, Bonferroni and Lorenz curves are derived. Measures of uncertainty such as Renyi entropy and s-entropy as well as Fisher information are presented. Method of maximum likelihood is used to estimate the parameters of the BGL and related distributions. Finally, real data examples are discussed to illustrate the applicability of this class of models.  相似文献   

18.
ABSTRACT

In this article, we introduce the Gompertz power series (GPS) class of distributions which is obtained by compounding Gompertz and power series distributions. This distribution contains several lifetime models such as Gompertz-geometric (GG), Gompertz-Poisson (GP), Gompertz-binomial (GB), and Gompertz-logarithmic (GL) distributions as special cases. Sub-models of the GPS distribution are studied in details. The hazard rate function of the GPS distribution can be increasing, decreasing, and bathtub-shaped. We obtain several properties of the GPS distribution such as its probability density function, and failure rate function, Shannon entropy, mean residual life function, quantiles, and moments. The maximum likelihood estimation procedure via a EM-algorithm is presented, and simulation studies are performed for evaluation of this estimation for complete data, and the MLE of parameters for censored data. At the end, a real example is given.  相似文献   

19.
ABSTRACT

In this article, a two-parameter generalized inverse Lindley distribution capable of modeling a upside-down bathtub-shaped hazard rate function is introduced. Some statistical properties of proposed distribution are explicitly derived here. The method of maximum likelihood, least square, and maximum product spacings are used for estimating the unknown model parameters and also compared through the simulation study. The approximate confidence intervals, based on a normal and a log-normal approximation, are also computed. Two algorithms are proposed for generating a random sample from the proposed distribution. A real data set is modeled to illustrate its applicability, and it is shown that our distribution fits much better than some other existing inverse distributions.  相似文献   

20.
A new parametric (three-parameter) survival distribution, the lognormal–power function distribution, with flexible behaviour is introduced. Its hazard rate function can be either unimodal, monotonically decreasing or can exhibit a bathtub shape. Special cases include the lognormal distribution and the power function distribution, with finite support. Regions of parameter space where the various forms of the hazard-rate function prevail are established analytically. The distribution lends itself readily to accelerated life regression modelling. Applications to five data sets taken from the literature are given. Also it is shown how the distribution can behave like a Weibull distribution (with negative aging) for certain parameter values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号