首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the probability density functions of quotient of order statistics. We use the Mellin transform technique, to find the distribution of the quotient Z= X/Xwhere X.,X(i < j) are the ith and jth order statistics from the Pareto, Power and Weibull distributions  相似文献   

2.
In this article, we derive general matrix formulae for second-order biases of maximum likelihood estimators (MLEs) in a class of heteroscedastic symmetric nonlinear regression models, thus generalizing some results in the literature. This class of regression models includes all symmetric continuous distributions, and has a wide range of practical applications in various fields such as engineering, biology, medicine and economics, among others. The variety of distributions with different kurtosis coefficients than the normal may give more flexibility in the choice of an appropriate distribution, particularly to accommodate outlying and influential observations. We derive a joint iterative process for estimating the mean and dispersion parameters. We also present simulation studies for the biases of the MLEs.  相似文献   

3.
Abstract

In this work, we introduce a new skewed slash distribution. This modification of the skew-slash distribution is obtained by the quotient of two independent random variables. That quotient consists on a skew-normal distribution divided by a power of an exponential distribution with scale parameter equal to two. In this way, the new skew distribution has a heavier tail than that of the skew-slash distribution. We give the probability density function expressed by an integral, but we obtain some important properties useful for making inferences, such as moment estimators and maximum likelihood estimators. By way of illustration and by using real data, we provide maximum likelihood estimates for the parameters of the modified skew-slash and the skew-slash distributions. Finally, we introduce a multivariate version of this new distribution.  相似文献   

4.
Abstract

In this article a generalization of the modified slash distribution is introduced. This model is based on the quotient of two independent random variables, whose distributions are a normal and a one-parameter gamma, respectively. The resulting distribution is a new model whose kurtosis is greater than other slash distributions. The probability density function, its properties, moments, and kurtosis coefficient are obtained. Inference based on moment and maximum likelihood methods is carried out. The multivariate version is also introduced. Two real data sets are considered in which it is shown that the new model fits better to symmetric data with heavy tails than other slash extensions previously introduced in literature.  相似文献   

5.
A new family of slash distributions, the modified slashed-Rayleigh distribution, is proposed and studied. This family is an extension of the ordinary Rayleigh distribution, being more flexible in terms of distributional kurtosis. It arises as a quotient of two independent random variables, one being a Rayleigh distribution in the numerator and the other a power of the exponential distribution in denominator. We present properties of the proposed family. In addition, we carry out estimation of the model parameters by moment and maximum likelihood methods. Finally, we conduct a small-scale simulation study to evaluate the performance of the maximum likelihood estimators and apply the results to a real data set, revealing its good performance.  相似文献   

6.
In this paper we introduce a modified slash distribution obtained by modifying the usual slash distribution. This new distribution is based on the quotient of two independent random variables, whose distributions are the normal and the power of an exponential distribution of scale parameter equals to two, respectively. In this way, the result is a new distribution whose kurtosis values are greater when compared with that of the slash distribution. We study the density, some properties, moments, kurtosis and make inferences by the method of moments and maximum likelihood. We introduce a multivariate version of this new distribution. Moreover, we provide two illustrations with real data showing that the new distribution fits better the data than the ordinary slash distribution.  相似文献   

7.
We introduce a new family of distributions suitable for fitting positive data sets with high kurtosis which is called the Slashed Generalized Rayleigh Distribution. This distribution arises as the quotient of two independent random variables, one being a generalized Rayleigh distribution in the numerator and the other a power of the uniform distribution in the denominator. We present properties and carry out estimation of the model parameters by moment and maximum likelihood (ML) methods. Finally, we conduct a small simulation study to evaluate the performance of ML estimators and analyze real data sets to illustrate the usefulness of the new model.  相似文献   

8.
The tobit model allows a censored response variable to be described by covariates. Its applications cover different areas such as economics, engineering, environment and medicine. A strong assumption of the standard tobit model is that its errors follow a normal distribution. However, not all applications are well modeled by this distribution. Some efforts have relaxed the normality assumption by considering more flexible distributions. Nevertheless, the presence of asymmetry could not be well described by these flexible distributions. A real-world data application of measles vaccine in Haiti is explored, which confirms this asymmetry. We propose a tobit model with errors following a Birnbaum–Saunders (BS) distribution, which is asymmetrical and has shown to be a good alternative for describing medical data. Inference based on the maximum likelihood method and a type of residual are derived for the tobit–BS model. We perform global and local influence diagnostics to assess the sensitivity of the maximum likelihood estimators to atypical cases. A Monte Carlo simulation study is carried out to empirically evaluate the performance of these estimators. We conduct a data analysis for the mentioned application of measles vaccine based on the proposed model with the help of the R software. The results show the good performance of the tobit–BS model.  相似文献   

9.
In this paper, we consider a generalization of the modified slash distribution. We define the new family through the quotient between an elliptically distributed random variable and the power of an exponential random variable with parameter equals to 2, both independent. We use the same idea to extend the model for the multivariate case and study general important properties from the resultant family. We perform inference by the method of moments and maximum likelihood. We present a simulation study which indicates satisfactory parameter recovery by using the estimation approaches. Illustrations reveals that it has potential for doing well in real problems.  相似文献   

10.
Aiming to avoid the sensitivity in the parameters estimation due to atypical observations or skewness, we develop asymmetric nonlinear regression models with mixed-effects, which provide alternatives to the use of normal distribution and other symmetric distributions. Nonlinear models with mixed-effects are explored in several areas of knowledge, especially when data are correlated, such as longitudinal data, repeated measures and multilevel data, in particular, for their flexibility in dealing with measures of areas such as economics and pharmacokinetics. The random components of the present model are assumed to follow distributions that belong to scale mixtures of skew-normal (SMSN) distribution family, that encompasses distributions with light and heavy tails, such as skew-normal, skew-Student-t, skew-contaminated normal and skew-slash, as well as symmetrical versions of these distributions. For the parameters estimation we obtain a numerical solution via the EM algorithm and its extensions, and the Newton-Raphson algorithm. An application with pharmacokinetic data shows the superiority of the proposed models, for which the skew-contaminated normal distribution has shown to be the most adequate distribution. A brief simulation study points to good properties of the parameter vector estimators obtained by the maximum likelihood method.  相似文献   

11.
In this paper we propose a test for second order stochastic dominance (SSD), for the case where both distribution functions are unknown. This is a generalization of a test proposed by Deshpande and Singh (1985), who compare a new random prospect with a known distribution function. We then show that our test is based on comparing the mean minus one half of Gini's mean difference of the distributions, which is known to be a necessary condition for SSD, as developed in the economics literature (Yitzhaki, 1982).  相似文献   

12.
Practical Bayesian data analysis involves manipulating and summarizing simulations from the posterior distribution of the unknown parameters. By manipulation we mean computing posterior distributions of functions of the unknowns, and generating posterior predictive distributions. The results need to be summarized both numerically and graphically. We introduce, and implement in R, an object-oriented programming paradigm based on a random variable object type that is implicitly represented by simulations. This makes it possible to define vector and array objects that may contain both random and deterministic quantities, and syntax rules that allow to treat these objects like any numeric vectors or arrays, providing a solution to various problems encountered in Bayesian computing involving posterior simulations. We illustrate the use of this new programming environment with examples of Bayesian computing, demonstrating missing-value imputation, nonlinear summary of regression predictions, and posterior predictive checking.  相似文献   

13.
The use of truncated distributions arises often in a wide variety of scientific problems. In the literature, there are a lot of sampling schemes and proposals developed for various specific truncated distributions. So far, however, the study of the truncated multivariate t (TMVT) distribution is rarely discussed. In this paper, we first present general formulae for computing the first two moments of the TMVT distribution under the double truncation. We formulate the results as analytic matrix expressions, which can be directly computed in existing software. Results for the left and right truncation can be viewed as special cases. We then apply the slice sampling algorithm to generate random variates from the TMVT distribution by introducing auxiliary variables. This strategic approach can result in a series of full conditional densities that are of uniform distributions. Finally, several examples and practical applications are given to illustrate the effectiveness and importance of the proposed results.  相似文献   

14.
The univariate fatigue life distribution proposed by Birnbaum and Saunders [A new family of life distributions. J Appl Probab. 1969;6:319–327] has been used quite effectively to model times to failure for materials subject to fatigue and for modelling lifetime data and reliability problems. In this article, we introduce a Birnbaum–Saunders (BS) distribution in the multivariate setting. The new multivariate model arises in the context of conditionally specified distributions. The proposed multivariate model is an absolutely continuous distribution whose marginals are univariate BS distributions. General properties of the multivariate BS distribution are derived and the estimation of the unknown parameters by maximum likelihood is discussed. Further, the Fisher's information matrix is determined. Applications to real data of the proposed multivariate distribution are provided for illustrative purposes.  相似文献   

15.
The problem of discordancy testing for an upper and lower outlier pair in a sample from a gamma distribution with known shape is considered. Three statistics are investigated: the well-known extremal quotient and two likelihood-based procedures. Approximations t o the null distributions of the statistics are obtained where appropriate. The non-null properties are investigated by sensitivity contours and simulation.  相似文献   

16.
This paper presents a new family of distributions for count data, the so called zero-modified power series (ZMPS), which is an extension of the power series (PS) distribution family, whose support starts at zero. This extension consists in modifying the probability of observing zero of each PS distribution, enabling the new zero-modified distribution to appropriately accommodate data which have any amount of zero observations (for instance, zero-inflated or zero-deflated data). The Hurdle distribution version of the ZMPS distribution is presented. PS distributions included in the proposed ZMPS family are the Poisson, Generalized Poisson, Geometric, Binomial, Negative Binomial and Generalized Negative Binomial distributions. The paper also describes the properties and particularities of the new distribution family for count data. The distribution parameters are estimated via maximum likelihood method and the use of the new family is illustrated in three real data sets. We emphasize that the new distribution family can accommodate sets of count data without any previous knowledge on the characteristic of zero-inflation or zero-deflation present in the data.  相似文献   

17.
Bayesian statistics can be hard to teach at an elementary level due to the difficulty in deriving the posterior distribution for interesting nonconjugate problems. One attractive method of summarizing the posterior distribution is to directly simulate from the probability distribution of interest and then explore the simulated sample. We illustrate the use of Rubin's Sampling-Importance-Resampling (SIR) algorithm to simulate posterior distributions for three inference problems. In each example, we focus on the construction of the prior distribution and then use exploratory data analysis techniques to describe the posterior samples and make inferences. The use of MINITAB macros is presented to illustrate the ease of performing this simulation on standard statistical computer programs.  相似文献   

18.
Modeling asset returns with alternative stable distributions   总被引:7,自引:0,他引:7  
In the 1960's Benoit Mandelbrot and Eugene Fama argued strongly in favor of the stable Paretian distribution as a model for the unconditional distribution of asset returns. Although a substantial body of subsequent empirical studies supported this position, the stable Paretian model plays a minor role in current empirical work.

While in the economics and finance literature stable distributions are virtually exclusively associated with stable Paretian distributions, in this paper we adopt a more fundamental view and extend the concept of stability to a variety of probabilistic schemes. These schemes give rise to alternative stable distributions, which we compare empirically using S&P 500 stock return data. In this comparison the Weibull distribution, associated with both the nonrandom-minimum and geometric-random summation schemes dominates the other stable distributions considered-including the stable Paretian model.  相似文献   

19.
Empirical likelihood ratio confidence regions based on the chi-square calibration suffer from an undercoverage problem in that their actual coverage levels tend to be lower than the nominal levels. The finite sample distribution of the empirical log-likelihood ratio is recognized to have a mixture structure with a continuous component on [0, + ∞) and a point mass at + ∞. The undercoverage problem of the Chi-square calibration is partly due to its use of the continuous Chi-square distribution to approximate the mixture distribution of the empirical log-likelihood ratio. In this article, we propose two new methods of calibration which will take advantage of the mixture structure; we construct two new mixture distributions by using the F and chi-square distributions and use these to approximate the mixture distributions of the empirical log-likelihood ratio. The new methods of calibration are asymptotically equivalent to the chi-square calibration. But the new methods, in particular the F mixture based method, can be substantially more accurate than the chi-square calibration for small and moderately large sample sizes. The new methods are also as easy to use as the chi-square calibration.  相似文献   

20.
Contamination of a sampled distribution, for example by a heavy-tailed distribution, can degrade the performance of a statistical estimator. We suggest a general approach to alleviating this problem, using a version of the weighted bootstrap. The idea is to 'tilt' away from the contaminated distribution by a given (but arbitrary) amount, in a direction that minimizes a measure of the new distribution's dispersion. This theoretical proposal has a simple empirical version, which results in each data value being assigned a weight according to an assessment of its influence on dispersion. Importantly, distance can be measured directly in terms of the likely level of contamination, without reference to an empirical measure of scale. This makes the procedure particularly attractive for use in multivariate problems. It has several forms, depending on the definitions taken for dispersion and for distance between distributions. Examples of dispersion measures include variance and generalizations based on high order moments. Practicable measures of the distance between distributions may be based on power divergence, which includes Hellinger and Kullback–Leibler distances. The resulting location estimator has a smooth, redescending influence curve and appears to avoid computational difficulties that are typically associated with redescending estimators. Its breakdown point can be located at any desired value ε∈ (0, ½) simply by 'trimming' to a known distance (depending only on ε and the choice of distance measure) from the empirical distribution. The estimator has an affine equivariant multivariate form. Further, the general method is applicable to a range of statistical problems, including regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号