首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Smooth Statistical Tail Functionals   总被引:4,自引:0,他引:4  
Many estimators of the extreme value index of a distribution function F that are based on a certain number k n of largest order statistics can be represented as a statistical tail function al, that is a functional T applied to the empirical tail quantile function Q n. We study the asymptotic behaviour of such estimators with a scale and location invariant functional T under weak second order conditions on F . For that purpose first a new approximation of the empirical tail quantile function is established. As a consequence we obtain weak consistency and asymptotic normality of T ( Q n) if T is continuous and Hadamard differentiable, respectively, at the upper quantile function of a generalized Pareto distribution and k pn tends to infinity sufficiently slowly. Then we investigate the asymptotic variance and bias. In particular, those functionals T re characterized that lead to an estimator with minimal asymptotic variance. Finally, we introduce a method to construct estimators of the extreme value index with a made-to-order asymptotic behaviour  相似文献   

2.
We develop two empirical likelihood-based inference procedures for longitudinal data under the framework of quantile regression. The proposed methods avoid estimating the unknown error density function and the intra-subject correlation involved in the asymptotic covariance matrix of the quantile estimators. By appropriately smoothing the quantile score function, the empirical likelihood approach is shown to have a higher-order accuracy through the Bartlett correction. The proposed methods exhibit finite-sample advantages over the normal approximation-based and bootstrap methods in a simulation study and the analysis of a longitudinal ophthalmology data set.  相似文献   

3.
In this article, we propose a resampling method based on perturbing the estimating functions to compute the asymptotic variances of quantile regression estimators under missing at random condition. We prove that the conditional distributions of the resampling estimators are asymptotically equivalent to the distributions of quantile regression estimators. Our method can deal with complex situations, where the response and part of covariates are missing. Numerical results based on simulated and real data are provided under several designs.  相似文献   

4.
In this paper, we study the empirical Bayes (EB) estimation in continuous one-parameter exponential families under negatively associated (NA) samples and positively associated (PA) samples. Under certain regularity conditions, it is shown that the convergence rates of proposed EB estimators under NA or PA samples are the same as those of EB estimators under independent observations, which significantly improve the existing results in EB estimation under associated samples.  相似文献   

5.
Abstract

In this article, we propose the best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) for the unknown parameters of location-scale family of distributions based on double-ranked set sampling (DRSS) using perfect and imperfect rankings. These estimators are then compared with the BLUEs and BLIEs based on ranked set sampling (RSS). It is shown that under perfect ranking, the proposed estimators are uniformly better than the BLUEs and BLIEs obtained via RSS. We also propose the best linear unbiased quantile (BLUQ) and the best linear invariant quantile (BLIQ) estimators for normal distribution under DRSS. It is observed that the proposed quantile estimators are more efficient than the BLUQ and BLIQ estimators based on RSS for both perfect and imperfect orderings.  相似文献   

6.
The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over thresholds. In this article, we establish the asymptotic normality of the well-known extreme quantile estimators based on this POT method, under very general assumptions. As an illustration, from this result, we deduce the asymptotic normality of the POT extreme quantile estimators in the case where the maximum likelihood (ML) or the generalized probability-weighted moments (GPWM) methods are used. Simulations are provided in order to compare the efficiency of these estimators based on ML or GPWM methods with classical ones proposed in the literature.  相似文献   

7.
This paper proposes nonparametric estimation methods for functional linear semiparametric quantile regression, where the conditional quantile of the scalar responses is modelled by both scalar and functional covariates and an additional unknown nonparametric function term. The slope function is estimated using the functional principal component basis and the nonparametric function is approximated by a piecewise polynomial function. The asymptotic distribution of the estimators of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. The asymptotic distribution of the estimator of the unknown nonparametric function is also established. Simulation studies are conducted to investigate the finite-sample performance of the proposed estimators. The proposed methodology is demonstrated by analysing a real data from ADHD-200 sample.  相似文献   

8.
In this paper, a new estimator for a conditional quantile is proposed by using the empirical likelihood method and local linear fitting when some auxiliary information is available. The asymptotic normality of the estimator at both boundary and interior points is established. It is shown that the asymptotic variance of the proposed estimator is smaller than those of the usual kernel estimators at interior points, and that the proposed estimator has the desired sampling properties at both boundary and interior points. Therefore, no boundary modifications are required in our estimation.  相似文献   

9.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

10.
Least-squares and quantile regressions are method of moments techniques that are typically used in isolation. A leading example where efficiency may be gained by combining least-squares and quantile regressions is one where some information on the error quantiles is available but the error distribution cannot be fully specified. This estimation problem may be cast in terms of solving an over-determined estimating equation (EE) system for which the generalized method of moments (GMM) and empirical likelihood (EL) are approaches of recognized importance. The major difficulty with implementing these techniques here is that the EEs associated with the quantiles are non-differentiable. In this paper, we develop a kernel-based smoothing technique for non-smooth EEs, and derive the asymptotic properties of the GMM and maximum smoothed EL (MSEL) estimators based on the smoothed EEs. Via a simulation study, we investigate the finite sample properties of the GMM and MSEL estimators that combine least-squares and quantile moment relationships. Applications to real datasets are also considered.  相似文献   

11.
This paper studies smoothed quantile linear regression models with response data missing at random. Three smoothed quantile empirical likelihood ratios are proposed first and shown to be asymptotically Chi-squared. Then, the confidence intervals for the regression coefficients are constructed without the estimation of the asymptotic covariance. Furthermore, a class of estimators for the regression parameter is presented to derive its asymptotic distribution. Simulation studies are conducted to assess the finite sample performance. Finally, a real-world data set is analyzed to illustrated the effectiveness of the proposed methods.  相似文献   

12.
This paper deals with the estimation of the tail index of a heavy-tailed distribution in the presence of covariates. A class of estimators is proposed in this context and its asymptotic normality established under mild regularity conditions. These estimators are functions of a kernel conditional quantile estimator depending on some tuning parameters. The finite sample properties of our estimators are illustrated on a small simulation study.  相似文献   

13.
This paper mainly discusses the asymptotic properties of quantile regression processes. In view of the exponential tightness and convexity argument, we prove the quantile regression estimators satisfy the functional moderate deviation principle. This method can be extended to a fair range of different statistical estimation problems such as quantile regression estimators with bridge penalized functions.  相似文献   

14.
Suppose independent random samples are available from two normal populations with a common mean and unequal variances. Estimation of a quantile of the first population is considered with respect to the quadratic loss. Some new estimators for the quantile are proposed using some previously known estimators of a common mean. Inadmissibility results are proved for estimators which are equivariant under affine and location groups of transformations. Risk values of various estimators of a quantile are compared numerically using a detailed simulation study.  相似文献   

15.
This paper develops a varying-coefficient approach to the estimation and testing of regression quantiles under randomly truncated data. In order to handle the truncated data, the random weights are introduced and the weighted quantile regression (WQR) estimators for nonparametric functions are proposed. To achieve nice efficiency properties, we further develop a weighted composite quantile regression (WCQR) estimation method for nonparametric functions in varying-coefficient models. The asymptotic properties both for the proposed WQR and WCQR estimators are established. In addition, we propose a novel bootstrap-based test procedure to test whether the nonparametric functions in varying-coefficient quantile models can be specified by some function forms. The performance of the proposed estimators and test procedure are investigated through simulation studies and a real data example.  相似文献   

16.
In this paper, we propose a robust test of exogeneity. The test statistics is constructed from quantile regression estimators, which are robust to heavy tails of errors. We derive the asymptotic distribution of the test statistic under the null hypothesis of exogeneity at a given quantile. The finite sample properties of the test are investigated through Monte Carlo simulations that exhibit not only good size and power properties, but also good robustness to outliers.  相似文献   

17.
For randomly right-censored data, new asymptotic expressions for the mean squared errors of the product-limit quantile estimator and a kernel-type quantile estimator are presented in this paper. From these results a comparison of the two quantile estimators with respect to their mean squared errors is given.  相似文献   

18.
A family of minimum quantile distance estimators, based on a subset of the sample quantiles, is proposed for the parameters of the three-parameter Weibull distribution. The estimation procedure is applicable to either complete or censored samples and, through use of the associated distance measure, provides a goodness-of-fit test for the Weibull model. The proposed estimators are both consistent and asymptotically normal and, in a particular instance, are optimal over the class of all estimators based on the same quantile subset. The problem of optimal quantile selection is also considered.  相似文献   

19.
Abstract

In survival or reliability studies, it is common to have data which are not only incomplete but weakly dependent too. Random truncation and censoring are two common forms of such data when they are neither independent nor strongly mixing but rather associated. The focus of this paper is on estimating conditional distribution and conditional quantile functions for randomly left truncated data satisfying association condition. We aim at deriving strong uniform consistency rates and asymptotic normality for the estimators and thereby, extend to association case some results stated under iid and α-mixing hypotheses. The performance of the quantile function estimator is evaluated on simulated data sets.  相似文献   

20.
Abstract

In this work, we propose and investigate a family of non parametric quantile regression estimates. The proposed estimates combine local linear fitting and double kernel approaches. More precisely, we use a Beta kernel when covariate’s support is compact and Gamma kernel for left-bounded supports. Finite sample properties together with asymptotic behavior of the proposed estimators are presented. It is also shown that these estimates enjoy the property of having finite variance and resistance to sparse design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号