首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cumulative sum control chart for multivariate Poisson distribution (MP-CUSUM) is proposed. The MP-CUSUM chart is constructed based on log-likelihood ratios with in-control parameters, Θ0, and shifts to be detected quickly, Θ1. The average run length (ARL) values are obtained using a Markov Chain-based method. Numerical experiments show that the MP-CUSUM chart is effective in detecting parameter shifts in terms of ARL. The MP-CUSUM chart with smaller Θ1 is more sensitive than that with greater Θ1 to smaller shifts, but more insensitive to greater shifts. A comparison shows that the proposed MP-CUSUM chart outperforms an existing MP chart.  相似文献   

2.
In this study, a control chart is constructed to monitor multivariate Poisson count data, called the MP chart. The control limits of the MP chart are developed by an exact probability method based on the sum of defects or non conformities for each quality characteristic. Numerical examples are used to illustrate the MP chart. The MP chart is evaluated by the average run length (ARL) in simulation. The result indicates that the MP chart is more appropriate than the Shewhart-type control chart when the correlation between variables exists.  相似文献   

3.
Control charts have been used effectively for years to monitor processes and detect abnormal behaviors. However, most control charts require a specific distribution to establish their control limits. The bootstrap method is a nonparametric technique that does not rely on the assumption of a parametric distribution of the observed data. Although the bootstrap technique has been used to develop univariate control charts to monitor a single process, no effort has been made to integrate the effectiveness of the bootstrap technique with multivariate control charts. In the present study, we propose a bootstrap-based multivariate T 2 control chart that can efficiently monitor a process when the distribution of observed data is nonnormal or unknown. A simulation study was conducted to evaluate the performance of the proposed control chart and compare it with a traditional Hotelling's T 2 control chart and the kernel density estimation (KDE)-based T 2 control chart. The results showed that the proposed chart performed better than the traditional T 2 control chart and performed comparably with the KDE-based T 2 control chart. Furthermore, we present a case study to demonstrate the applicability of the proposed control chart to real situations.  相似文献   

4.
The literature on statistical process control (SPC) describes the negative effects of autocorrelation in terms of the increase in false alarms. This has been treated by the individual modeling of each series or the application of VAR models. In the former case, the analysis of the cross correlation structure between the variables is altered. In the latter, if the cross correlation is not strong, the filtering process may modify the weakest relations. In order to improve these aspects, state-space models have been introduced in multivariate statistical process control (MSPC). This article presents a proposal for building a control chart for innovations, estimating its average run length to highlight its advantages over the VAR approach mentioned above.  相似文献   

5.
A variable sampling interval (VSI) feature is introduced to the multivariate synthetic generalized sample variance |S| control chart. This multivariate synthetic control chart is a combination of the |S| sub-chart and the conforming run length sub-chart. The VSI feature enhances the performance of the multivariate synthetic control chart. The comparative results show that the VSI multivariate synthetic control chart performs better than other types of multivariate control charts for detecting shifts in the covariance matrix of a multivariate normally distributed process. An example is given to illustrate the operation of the VSI multivariate synthetic chart.  相似文献   

6.
This article proposes a heuristic method of constructing multivariate cumulative sum and exponentially weighted moving average control charts for skewed populations based on the weighted standard deviation method which adjusts the variance–covariance matrix of quality characteristics and approximates the probability density function using several multivariate normal distributions. These control charts, however, reduce to the conventional control charts when the underlying distribution is symmetric. In-control and out-of-control average run lengths of the proposed control charts are compared with those of the conventional control charts for multivariate lognormal and Weibull distributions. Simulation results show that considerable improvements over the standard method can be achieved when the underlying distribution is skewed.  相似文献   

7.
In this article, we extend a single exponentially weighted moving average semicircle (EWMA-SC) chart to a single generally weighted moving average (GWMA) chart. This new control chart can effectively combine the features of the SC chart with GWMA techniques, and can easily indicate the source and direction of a change. We perform simulations to evaluate the average run length, standard deviation of the run length, and diagnostic abilities of the GWMA-SC and EWMA-SC charts. An extensive comparison shows that the GWMA-SC control chart is more sensitive than the EWMA-SC chart for detecting small shifts in the process mean and/or variability.  相似文献   

8.
Standard multivariate control charts usually employ fixed sample sizes at equal sampling intervals to monitor a process. In this study, a multivariate exponential weighted moving average (MEWMA) chart with adaptive sample sizes is investigated. Performance measure of the adaptive-sample-size MEWMA chart is obtained through a Markov chain approach. The performance of the adaptive-sample-size MEWMA chart is compared with the fixed-sample-size control chart in terms of steady-state average run length for different magnitude of shifts in the process mean. It is shown that the adaptive-sample-size chart is more efficient than the fixed-sample-size MEWMA control chart in detecting shifts in the process mean.  相似文献   

9.
Statistical design is applied to a multivariate exponentially weighted moving average (MEWMA) control chart. The chart parameters are control limit H and smoothing constant r. The choices of the parameters depend on the number of variables p and the size of the process mean shift δ. The MEWMA statistic is modeled as a Markov chain and the Markov chain approach is used to determine the properties of the chart. Although average run length has become a traditional measure of the performance of control schemes, some authors have suggested other measures, such as median and other percentiles of the run length distribution to explain run length properties of a control scheme. This will allow a thorough study of the performance of the control scheme. Consequently, conclusions based on these measures would provide a better and comprehensive understanding of a scheme. In this article, we present the performance of the MEWMA control chart as measured by the average run length and median run length. Graphs are given so that the chart parameters of an optimal MEWMA chart can be determined easily.  相似文献   

10.
A multivariate synthetic exponentially weighted moving average (MSEWMA) control chart is presented in this study. The MSEWMA control chart consists of a multivariate exponentially weighted moving average (MEWMA) control chart and a conforming run length control chart. The average run length of the MSEWMA control chart is obtained using a Markov chain approach. From the numerical comparisons, it is shown that the MSEWMA control chart is more efficient than the multivariate synthetic T 2 control chart and the MEWMA control chart for detecting shifts in the process mean vector.  相似文献   

11.
This article proposes a multivariate synthetic control chart for skewed populations based on the weighted standard deviation method. The proposed chart incorporates the weighted standard deviation method into the standard multivariate synthetic control chart. The standard multivariate synthetic chart consists of the Hotelling's T 2 chart and the conforming run length chart. The weighted standard deviation method adjusts the variance–covariance matrix of the quality characteristics and approximates the probability density function using several multivariate normal distributions. The proposed chart reduces to the standard multivariate synthetic chart when the underlying distribution is symmetric. In general, the simulation results show that the proposed chart performs better than the existing multivariate charts for skewed populations and the standard T 2 chart, in terms of false alarm rates as well as moderate and large mean shift detection rates based on the various degrees of skewnesses.  相似文献   

12.
A multivariate extension of the adaptive exponentially weighted moving average (AEWMA) control chart is proposed. The new multivariate scheme can detect small and large shifts in the process mean vector effectively. The proposed scheme can be viewed as a smooth combination of a multivariate exponentially weighted moving average (MEWMA) chart and a Shewhart χ2-chart. The optimal design of the proposed chart is given according to a pre-specified in-control average run length and two shift sizes; a small and large shift each measured in terms of the non centrality parameter. The signal resistance of the newly proposed multivariate chart is also given. Comparisons among the new chart, the MEWMA chart, and the combined Shewhart-MEWMA (S-MEWMA) chart in terms of the standard and worst-case average run length profiles are presented. In addition, the three charts are compared with respect to their worst-case signal resistance values. The proposed chart gives somewhat better worst-case ARL and signal resistance values than the competing charts. It also gives better standard ARL performance especially for moderate and large shifts. The effectiveness of our proposed chart is illustrated through an example with simulated data set.  相似文献   

13.
ABSTRACT

The EWMA control chart is used to detect small shifts in a process. It has been shown that, for certain values of the smoothing parameter, the EWMA chart for the mean is robust to non normality. In this article, we examine the case of non normality in the EWMA charts for the dispersion. It is shown that we can have an EWMA chart for dispersion robust to non normality when non normality is not extreme.  相似文献   

14.
In this article, we provide a nonparametric Shewhart-type synthetic control chart based on the signed-rank statistic to monitor shifts in the known in-control process median. The synthetic control chart is a combination of a signed-rank chart due to Bakir (2004 Bakir , S. T. ( 2004 ). A distribution-free Shewhart quality control chart based on signed-ranks . Quality Engineering 16 : 613623 .[Taylor & Francis Online] [Google Scholar]) and a conforming run length chart due to Bourke (1991 Bourke , P. D. ( 1991 ). Detecting a shift in fraction nonconforming using run-length control charts with 100% inspection . Journal of Quality Technology 23 : 225238 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). The operation and design of the chart are discussed and the performance of the chart has been studied. The chart has an attractive average run length behavior as compared to the parametric control chart for a class of symmetric continuous process distributions. The proposed chart performs better than the nonparametric signed-rank chart given by Bakir (2004 Bakir , S. T. ( 2004 ). A distribution-free Shewhart quality control chart based on signed-ranks . Quality Engineering 16 : 613623 .[Taylor & Francis Online] [Google Scholar]) and Chakraborti and Eryilmaz (2007 Chakraborti , S. , Eryilmaz , S. (2007). A nonparametric Shewhart-type signed-rank control chart based on runs. Communications in Statistics—Simulation and Computation 36:335356.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]).  相似文献   

15.
A synthetic mean square error (MSE) control chart is presented in this study for monitoring the changes in the mean and standard deviation of a normally distributed process. The synthetic MSE control chart is a combination of the standard MSE control chart and the conforming run length (CRL) control chart. From the numerical comparisons, the synthetic MSE control chart is always more efficient than the standard MSE control chart in detecting shifts in the process mean and standard deviation. The synthetic MSE chart also performs better than the exponentially weighted moving average-semicircle (EWMA-SC) chart, except for some cases where the process mean shifts are small.  相似文献   

16.
Statistical control charts are often used in industry to monitor processes in the interests of quality improvement. Such charts assume independence and normality of the control statistic, but these assumptions are often violated in practice. To better capture the true shape of the underlying distribution of the control statistic, we utilize the g-and-k distributions to estimate probability limits, the true ARL, and the error in confidence that arises from incorrectly assuming normality. A sensitivity assessment reveals that the extent of error in confidence associated with control chart decision-making procedures increases more rapidly as the distribution becomes more skewed or as the tails of the distribution become longer than those of the normal distribution. These methods are illustrated using both a frequentist and computational Bayesian approach to estimate the g-and-k parameters in two different practical applications. The Bayesian approach is appealing because it can account for prior knowledge in the estimation procedure and yields posterior distributions of parameters of interest such as control limits.  相似文献   

17.
18.
The Poisson GWMA (PGWMA) control chart is an extension model of Poisson EWMA chart. It is substantially sensitive to small process shifts for monitoring Poisson observations. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. In this article, we employ these approaches in PGWMA charts and introduce a novel chart called Poisson double GWMA (PDGWMA) chart for comparison. Using simulation, various control schemes are designed and their average run lengths (ARLs) are computer and compared. It is shown that the PDGWMA chart is the first choice in detecting small shifts especially when the shifts are downward, and the PGWMA chart with adjusted time-varying control limits performs excellently in detecting great process shifts during the initial stage.  相似文献   

19.
In a process, the deviation from location or scale parameters affects the quality of the process and waste resources. So it is essential to monitor such processes for possible changes due to any assignable causes. Control charts are the most famous tool used to meet this intention. It is useless to monitor process location until the assurance that process dispersion is in-control. This study proposes some new two-sided memory control charts named as progressive variance (PV) control charts which are based on sample variance to monitor changes in process dispersion assuming normality of quality characteristic to be monitored. Simulation studies are made, and an example is discussed to evaluate the performance of the proposed charts. The comparison of the proposed chart is made with exponentially weighted moving average- and cumulative sum-type charts for process dispersion. The study shows that performance of the proposed charts are uniformly better than its competitors for detecting positive shifts while for detecting negative shift in the variance their performance is better for small shifts and reasonably good for moderated shifts.  相似文献   

20.
This article proposes a multivariate control chart, the syn-|S| chart, which comprises a standard |S| subchart and a multivariate synthetic sample generalized variance |S| (synthetic |S|) subchart, for detecting shifts in the covariance matrix of a multivariate normally distributed process. A procedure for the optimal design of the syn-|S| chart by minimizing the average extra quadratic loss is provided. The syn-|S| chart has better overall performance compared to the synthetic |S| chart and the standard |S| chart, based on the zero-state and steady-state modes. An example is given to illustrate the operation of the synthetic |S| chart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号