共查询到20条相似文献,搜索用时 15 毫秒
1.
Ronald W. Butler 《Scandinavian Journal of Statistics》1998,25(1):69-75
The matrix generalized inverse Gaussian distribution (MGIG) is shown to arise as a conditional distribution of components of a Wishart distributio n. In the special scalar case, the characterization refers to members of the class of generalized inverse Gaussian distributions (GIGs) and includes the inverse Gaussian distribution among others 相似文献
2.
This article presents a new procedure for testing homogeneity of scale parameters from k independent inverse Gaussian populations. Based on the idea of generalized likelihood ratio method, a new generalized p-value is derived. Some simulation results are presented to compare the performance of the proposed method and existing methods. Numerical results show that the proposed test has good size and power performance. 相似文献
3.
We present an algorithm for multivariate robust Bayesian linear regression with missing data. The iterative algorithm computes an approximative posterior for the model parameters based on the variational Bayes (VB) method. Compared to the EM algorithm, the VB method has the advantage that the variance for the model parameters is also computed directly by the algorithm. We consider three families of Gaussian scale mixture models for the measurements, which include as special cases the multivariate t distribution, the multivariate Laplace distribution, and the contaminated normal model. The observations can contain missing values, assuming that the missing data mechanism can be ignored. A Matlab/Octave implementation of the algorithm is presented and applied to solve three reference examples from the literature. 相似文献
4.
Abstract. Expressions for (absolute) moments of generalized hyperbolic and normal inverse Gaussian (NIG) laws are given in terms of moments of the corresponding symmetric laws. For the (absolute) moments centred at the location parameter μ explicit expressions as series containing Bessel functions are provided. Furthermore, the derivatives of the logarithms of absolute μ -centred moments with respect to the logarithm of time are calculated explicitly for NIG Lévy processes. Computer implementation of the formulae obtained is briefly discussed. Finally, some further insight into the apparent scaling behaviour of NIG Lévy processes is gained. 相似文献
5.
In this article, the authors first obtain the exact distribution of the logarithm of the product of independent generalized Gamma r.v.’s (random variables) in the form of a Generalized Integer Gamma distribution of infinite depth, where all the rate and shape parameters are well identified. Then, by a routine transformation, simple and manageable expressions for the exact distribution of the product of independent generalized Gamma r.v.’s are derived. The method used also enables us to obtain quite easily very accurate, manageable and simple near-exact distributions in the form of Generalized Near-Integer Gamma distributions. Numerical studies are carried out to assess the precision of different approximations to the exact distribution and they show the high accuracy of the approximations provided by the near-exact distributions. As particular cases of the exact distributions obtained we have the distribution of the product of independent Gamma, Weibull, Frechet, Maxwell-Boltzman, Half-Normal, Rayleigh, and Exponential distributions, as well as the exact distribution of the generalized variance, the exact distribution of discriminants or Vandermonde determinants and the exact distribution of any linear combination of generalized Gumbel distributions, as well as yet the distribution of the product of any power of the absolute value of independent Normal r.v.’s. 相似文献
6.
Parametric models for interval censored data can now easily be fitted with minimal programming in certain standard statistical software packages. Regression equations can be introduced, both for the location and for the dispersion parameters. Finite mixture models can also be fitted, with a point mass on right (or left) censored observations, to allow for individuals who cannot have the event (or already have it). This mixing probability can also be allowed to follow a regression equation.Here, models based on nine different distributions are compared for three examples of heavily censored data as well as a set of simulated data. We find that, for parametric models, interval censoring can often be ignored and that the density, at centres of intervals, can be used instead in the likelihood function, although the approximation is not always reliable. In the context of heavily interval censored data, the conclusions from parametric models are remarkably robust with changing distributional assumptions and generally more informative than the corresponding non-parametric models. 相似文献
7.
Homogeneity of dispersion parameters is a standard assumption in inverse Gaussian regression analysis. However, this assumption is not necessarily appropriate. This paper is devoted to the test for varying dispersion in general inverse Gaussian linear regression models. Based on the modified profile likelihood (Cox & Reid, 1987), the adjusted score test for varying dispersion is developed and illustrated with Consumer- Product Sales data (Whitmore, 1986) and Gas vapour data (Weisberg, 1985). The effectiveness of orthogonality transformation and the properties of a score statistic and its adjustment are investigated through Monte Carlo simulations. 相似文献
8.
Dinghai Xu 《统计学通讯:模拟与计算》2013,42(7):1403-1421
This article investigates an efficient estimation method for a class of switching regressions based on the characteristic function (CF). We show that with the exponential weighting function, the CF-based estimator can be achieved from minimizing a closed form distance measure. Due to the availability of the analytical structure of the asymptotic covariance, an iterative estimation procedure is developed involving the minimization of a precision measure of the asymptotic covariance matrix. Numerical examples are illustrated via a set of Monte Carlo experiments examining the implementation, finite sample property and the efficiency of the proposed estimator. 相似文献
9.
A. Batsidis 《统计学通讯:理论与方法》2013,42(3):349-372
In this article, the multivariate linear regression model is studied under the assumptions that the error term of this model is described by the elliptically contoured distribution and the observations on the response variables are of a monotone missing pattern. It is primarily concerned with estimation of the model parameters, as well as with the development of the likelihood ratio test in order to examine the existence of linear constraints on the regression coefficients. An illustrative example is presented for the explanation of the results. 相似文献
10.
Minjung Kyung 《统计学通讯:模拟与计算》2016,45(3):1104-1128
To better understand the power shift and the U.S. role compared to China and others regional actors, the Chicago Council on Global Affairs and the East Asia Institute (EAI) surveyed people in six countries - China, Japan, South Korea, Vietnam, Indonesian, and the United States - in the first half of 2008 about regional security and economic integration in Asia and about how these nations perceive each other (Bouton et al., 2010). There exists latent variance that cannot be adequately explained by parametric models. This is, in large part, due to the hidden structures and latent stories that from in unexpected ways. Therefore, a new Gibbs sampler is developed here in order to reveal preciously unseen structures and latent variances found in the survey dataset of Bouton et al. This new sampler is based upon the semiparametric regression, a well-known tool frequently utilized in order to capture the functional dependence between variables with fixed effect parametric and nonlinear regression. This is then extended to a generalized semiparametric regression for binary responses with logit and probit link function. The new sampler is then developed for the generalized linear mixed model with a nonparametric random effect. It is expressed as nonparametric regression with the multinomial-Dirichlet distribution for the number and positions of knots. 相似文献
11.
In this article, a new family of probability distributions with domain in ?+ is introduced. This class can be considered as a natural extension of the exponential-inverse Gaussian distribution in Bhattacharya and Kumar (1986) and Frangos and Karlis (2004). This new family is obtained through the mixture of gamma distribution with generalized inverse Gaussian distribution. We also show some important features such as expressions of probability density function, moments, etc. Special attention is paid to the mixture with the inverse Gaussian distribution, as a particular case of the generalized inverse Gaussian distribution. From the exponential-inverse Gaussian distribution two one-parameter family of distributions are obtained to derive risk measures and credibility expressions. The versatility of this family has been proven in numerical examples. 相似文献
12.
The durations between market activities such as trades and quotes provide useful information on the underlying assets while analyzing financial time series. In this article, we propose a stochastic conditional duration model based on the inverse Gaussian distribution. The non-monotonic nature of the failure rate of the inverse Gaussian distribution makes it suitable for modeling the durations in financial time series. The parameters of the proposed model are estimated by an efficient importance sampling method. A simulation experiment is conducted to check the performance of the estimators. These estimates are used to compute estimated hazard functions and to compare with the empirical hazard functions. Finally, a real data analysis is provided to illustrate the practical utility of the models. 相似文献
13.
《统计学通讯:理论与方法》2012,41(13-14):2465-2489
The Akaike information criterion, AIC, and Mallows’ C p statistic have been proposed for selecting a smaller number of regressors in the multivariate regression models with fully unknown covariance matrix. All of these criteria are, however, based on the implicit assumption that the sample size is substantially larger than the dimension of the covariance matrix. To obtain a stable estimator of the covariance matrix, it is required that the dimension of the covariance matrix is much smaller than the sample size. When the dimension is close to the sample size, it is necessary to use ridge-type estimators for the covariance matrix. In this article, we use a ridge-type estimators for the covariance matrix and obtain the modified AIC and modified C p statistic under the asymptotic theory that both the sample size and the dimension go to infinity. It is numerically shown that these modified procedures perform very well in the sense of selecting the true model in large dimensional cases. 相似文献
14.
We present two stochastic models that describe the relationship between biomarker process values at random time points, event times, and a vector of covariates. In both models the biomarker processes are degradation processes that represent the decay of systems over time. In the first model the biomarker process is a Wiener process whose drift is a function of the covariate vector. In the second model the biomarker process is taken to be the difference between a stationary Gaussian process and a time drift whose drift parameter is a function of the covariates. For both models we present statistical methods for estimation of the regression coefficients. The first model is useful for predicting the residual time from study entry to the time a critical boundary is reached while the second model is useful for predicting the latency time from the infection until the time the presence of the infection is detected. We present our methods principally in the context of conducting inference in a population of HIV infected individuals. 相似文献
15.
Andres Gutierrez 《统计学通讯:模拟与计算》2015,44(1):168-195
This article is aimed at reviewing a novel Bayesian approach to handle inference and estimation in the class of generalized nonlinear models. These models include some of the main techniques of statistical methodology, namely generalized linear models and parametric nonlinear regression. In addition, this proposal extends to methods for the systematic treatment of variation that is not explicitly predicted within the model, through the inclusion of random effects, and takes into account the modeling of dispersion parameters in the class of two-parameter exponential family. The methodology is based on the implementation of a two-stage algorithm that induces a hybrid approach based on numerical methods for approximating the likelihood to a normal density using a Taylor linearization around the values of current parameters in an MCMC routine. 相似文献
16.
17.
In this article, we formulate a class of semiparametric marginal means models with a mixture of time-varying and time-independent parameters for analyzing panel data. For inference about the regression parameters, an estimation procedure is developed and asymptotic properties of the proposed estimators are established. In addition, some tests are presented for investigating whether or not covariate effects vary with time. The finite-sample behavior of the proposed methods is examined in simulation studies, and the data from an AIDS clinical trial study are used to illustrate the methodology. 相似文献
18.
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations 总被引:7,自引:0,他引:7
Håvard Rue Sara Martino Nicolas Chopin 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2009,71(2):319-392
Summary. Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged. 相似文献
19.
Yongmiao Hong 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2000,62(3):557-574
Two tests for serial dependence are proposed using a generalized spectral theory in combination with the empirical distribution function. The tests are generalizations of the Cramér-von Mises and Kolmogorov-Smirnov tests based on the standardized spectral distribution function. They do not involve the choice of a lag order, and they are consistent against all types of pairwise serial dependence, including those with zero autocorrelation. They also require no moment condition and are distribution free under serial independence. A simulation study compares the finite sample performances of the new tests and some closely related tests. The asymptotic distribution theory works well in finite samples. The generalized Cramér-von Mises test has good power against a variety of dependent alternatives and dominates the generalized Kolmogorov-Smirnov test. A local power analysis explains some important stylized facts on the power of the tests based on the empirical distribution function. 相似文献
20.
In this article, we extend the Wald, score, skewness-corrected score, likelihood ratio, and mid-P intervals for the means of the generalized Poisson and generalized negative binomial distributions. These distributions are the members of the discrete version of the natural exponential family (NEF) with cubic variance function (CVF). Also, the coverage probabilities, the distal and mesial noncoverage probabilities, and the lengths of the proposed confidence intervals are estimated by means of a Monte Carlo simulation study. Finally, some practical examples are provided to show the applicability of the proposed intervals in applied studies. 相似文献