首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new goodness-of-fit test for normal and lognormal distributions with unknown parameters and type-II censored data. This test is a generalization of Michael's test for censored samples, which is based on the empirical distribution and a variance stabilizing transformation. We estimate the parameters of the model by using maximum likelihood and Gupta's methods. The quantiles of the distribution of the test statistic under the null hypothesis are obtained through Monte Carlo simulations. The power of the proposed test is estimated and compared to that of the Kolmogorov–Smirnov test also using simulations. The new test is more powerful than the Kolmogorov–Smirnov test in most of the studied cases. Acceptance regions for the PP, QQ and Michael's stabilized probability plots are derived, making it possible to visualize which data contribute to the decision of rejecting the null hypothesis. Finally, an illustrative example is presented.  相似文献   

2.
Normality tests can be classified into tests based on chi-squared, moments, empirical distribution, spacings, regression and correlation and other special tests. This paper studies and compares the power of eight selected normality tests: the Shapiro–Wilk test, the Kolmogorov–Smirnov test, the Lilliefors test, the Cramer–von Mises test, the Anderson–Darling test, the D'Agostino–Pearson test, the Jarque–Bera test and chi-squared test. Power comparisons of these eight tests were obtained via the Monte Carlo simulation of sample data generated from alternative distributions that follow symmetric short-tailed, symmetric long-tailed and asymmetric distributions. Our simulation results show that for symmetric short-tailed distributions, D'Agostino and Shapiro–Wilk tests have better power. For symmetric long-tailed distributions, the power of Jarque–Bera and D'Agostino tests is quite comparable with the Shapiro–Wilk test. As for asymmetric distributions, the Shapiro–Wilk test is the most powerful test followed by the Anderson–Darling test.  相似文献   

3.
A new approach of randomization is proposed to construct goodness of fit tests generally. Some new test statistics are derived, which are based on the stochastic empirical distribution function (EDF). Note that the stochastic EDF for a set of given sample observations is a randomized distribution function. By substituting the stochastic EDF for the classical EDF in the Kolmogorov–Smirnov, Cramér–von Mises, Anderson–Darling, Berk–Jones, and Einmahl–Mckeague statistics, randomized statistics are derived, of which the qth quantile and the expectation are chosen as test statistics. In comparison to existing tests, it is shown, by a simulation study, that the new test statistics are generally more powerful than the corresponding ones based on the classical EDF or modified EDF in most cases.  相似文献   

4.
In this article, tests are developed which can be used to investigate the goodness-of-fit of the skew-normal distribution in the context most relevant to the data analyst, namely that in which the parameter values are unknown and are estimated from the data. We consider five test statistics chosen from the broad Cramér–von Mises and Kolmogorov–Smirnov families, based on measures of disparity between the distribution function of a fitted skew-normal population and the empirical distribution function. The sampling distributions of the proposed test statistics are approximated using Monte Carlo techniques and summarized in easy to use tabular form. We also present results obtained from simulation studies designed to explore the true size of the tests and their power against various asymmetric alternative distributions.  相似文献   

5.
This work considers goodness-of-fit for the life test data with hybrid censoring. An alternative representation of the Kolmogorov–Smirnov (KS) statistics is provided under Type-I censoring. The alternative representation leads us to approximate the limiting distributions of the KS statistic as a functional of the Brownian bridge for Type-II, Type-I hybrid, and Type-II hybrid censored data. The approximated distributions are used to obtain the critical values of the tests in this context. We found that the proposed KS test procedure for Type-II censoring has more power than the available one(s) in literature.  相似文献   

6.
Consistency of propensity score matching estimators hinges on the propensity score's ability to balance the distributions of covariates in the pools of treated and non-treated units. Conventional balance tests merely check for differences in covariates’ means, but cannot account for differences in higher moments. For this reason, this paper proposes balance tests which test for differences in the entire distributions of continuous covariates based on quantile regression (to derive Kolmogorov–Smirnov and Cramer–von-Mises–Smirnov-type test statistics) and resampling methods (for inference). Simulations suggest that these methods are very powerful and capture imbalances related to higher moments when conventional balance tests fail to do so.  相似文献   

7.
In this paper we derive some new tests for goodness-of-fit based on Rubin's empirical distribution function (EDF). Substituting Rubin's EDF for the classical EDF in the Kolmogorov–Smirnov, Cramér–von Mises, Anderson–Darling statistics, since Rubin's EDF for a given sample is a randomized distribution function, randomized statistics are derived, of which the qth quantile and the expectation are chosen as test statistics. We show that the new tests are consistent under simple hypothesis. Several power comparisons are also performed to show that the new tests are generally more powerful than the classical ones.  相似文献   

8.
In this article, we describe a new approach to compare the power of different tests for normality. This approach provides the researcher with a practical tool for evaluating which test at their disposal is the most appropriate for their sampling problem. Using the Johnson systems of distribution, we estimate the power of a test for normality for any mean, variance, skewness, and kurtosis. Using this characterization and an innovative graphical representation, we validate our method by comparing three well-known tests for normality: the Pearson χ2 test, the Kolmogorov–Smirnov test, and the D'Agostino–Pearson K 2 test. We obtain such comparison for a broad range of skewness, kurtosis, and sample sizes. We demonstrate that the D'Agostino–Pearson test gives greater power than the others against most of the alternative distributions and at most sample sizes. We also find that the Pearson χ2 test gives greater power than Kolmogorov–Smirnov against most of the alternative distributions for sample sizes between 18 and 330.  相似文献   

9.
In this paper, point and interval estimations for the parameters of the exponentiated exponential (EE) distribution are studied based on progressive first-failure-censored data. The Bayes estimates are computed based on squared error and Linex loss functions and using Markov Chain Monte Carlo (MCMC) algorithm. Also, based on this censoring scheme, approximate confidence intervals for the parameters of EE distribution are developed. Monte Carlo simulation study is carried out to compare the performances of the different methods by computing the estimated risks (ERs), as well as Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates. Finally, a real data set is introduced and analyzed using EE and Weibull distributions. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (K–S) test statistic to emphasize that the EE model fits the data with the same efficiency as the other model. Point and interval estimation of all parameters are studied based on this real data set as illustrative example.  相似文献   

10.
Based on a random sample from the Laplace population with unknown shape and scale parameters, one- and two-sided confidence bands on the entire cumulative distribution function and simultaneous confidence intervals for the interval probabilities under the distribution are constructed using Kolmogorov–Smirnov type statistics. Small sample and asymptotic percentiles of the relevant statistics are provided.  相似文献   

11.
For testing normality we investigate the power of several tests, first of all, the well-known test of Jarque & Bera (1980) and furthermore the tests of Kuiper (1960) and Shapiro & Wilk (1965) as well as tests of Kolmogorov–Smirnov and Cramér-von Mises type. The tests on normality are based, first, on independent random variables (model I) and, second, on the residuals in the classical linear regression (model II). We investigate the exact critical values of the Jarque–Bera test and the Kolmogorov–Smirnov and Cramér-von Mises tests, in the latter case for the original and standardized observations where the unknown parameters μ and σ have to be estimated. The power comparison is carried out via Monte Carlo simulation assuming the model of contaminated normal distributions with varying parameters μ and σ and different proportions of contamination. It turns out that for the Jarque–Bera test the approximation of critical values by the chi-square distribution does not work very well. The test is superior in power to its competitors for symmetric distributions with medium up to long tails and for slightly skewed distributions with long tails. The power of the Jarque–Bera test is poor for distributions with short tails, especially if the shape is bimodal – sometimes the test is even biased. In this case a modification of the Cramér-von Mises test or the Shapiro–Wilk test may be recommended.  相似文献   

12.
There are several statistical hypothesis tests available for assessing normality assumptions, which is an a priori requirement for most parametric statistical procedures. The usual method for comparing the performances of normality tests is to use Monte Carlo simulations to obtain point estimates for the corresponding powers. The aim of this work is to improve the assessment of 9 normality hypothesis tests. For that purpose, random samples were drawn from several symmetric and asymmetric nonnormal distributions and Monte Carlo simulations were carried out to compute confidence intervals for the power achieved, for each distribution, by two of the most usual normality tests, Kolmogorov–Smirnov with Lilliefors correction and Shapiro–Wilk. In addition, the specificity was computed for each test, again resorting to Monte Carlo simulations, taking samples from standard normal distributions. The analysis was then additionally extended to the Anderson–Darling, Cramer-Von Mises, Pearson chi-square Shapiro–Francia, Jarque–Bera, D'Agostino and uncorrected Kolmogorov–Smirnov tests by determining confidence intervals for the areas under the receiver operating characteristic curves. Simulations were performed to this end, wherein for each sample from a nonnormal distribution an equal-sized sample was taken from a normal distribution. The Shapiro–Wilk test was seen to have the best global performance overall, though in some circumstances the Shapiro–Francia or the D'Agostino tests offered better results. The differences between the tests were not as clear for smaller sample sizes. Also to be noted, the SW and KS tests performed generally quite poorly in distinguishing between samples drawn from normal distributions and t Student distributions.  相似文献   

13.
ABSTRACT

A simple test based on Gini's mean difference is proposed to test the hypothesis of equality of population variances. Using 2000 replicated samples and empirical distributions, we show that the test compares favourably with Bartlett's and Levene's test for the normal population. Also, it is more powerful than Bartlett's and Levene's tests for some alternative hypotheses for some non-normal distributions and more robust than the other two tests for large sample sizes under some alternative hypotheses. We also give an approximate distribution to the test statistic to enable one to calculate the nominal levels and P-values.  相似文献   

14.
This article presents a derivation of the distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling test statistics in the case of exponential sampling when the parameters are unknown and estimated from sample data for small sample sizes via maximum likelihood.  相似文献   

15.
Results are given of an empirical power study of three statistical procedures for testing for exponentiality of several independent samples. The test procedures are the Tiku (1974) test, a multi-sample Durbin (1975) test, and a multi-sample Shapiro–Wilk (1972) test. The alternative distributions considered in the study were selected from the gamma, Weibull, Lomax, lognormal, inverse Gaussian, and Burr families of positively skewed distributions. The general behavior of the conditional mean exceedance function is used to classify each alternative distribution. It is shown that Tiku's test generally exhibits overall greater power than either of the other two test procedures. For certain alternative distributions, Shapiro–Wilk's test is superior when the sample sizes are small.  相似文献   

16.
The use of statistics based on the empirical distribution function is analysed for estimation of the scale, shape, and location parameters of the three-parameter Weibull distribution. The resulting maximum goodness of fit (MGF) estimators are compared with their maximum likelihood counterparts. In addition to the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling statistics, some related empirical distribution function statistics using different weight functions are considered. The results show that the MGF estimators of the scale and shape parameters are usually more efficient than the maximum likelihood estimators when the shape parameter is smaller than 2, particularly if the sample size is large.  相似文献   

17.
In this paper, tests for the skewness parameter of the two-piece double exponential distribution are derived when the location parameter is unknown. Classical tests like Neyman structure test and likelihood ratio test (LRT), that are generally used to test hypotheses in the presence of nuisance parameters, are not feasible for this distribution since the exact distributions of the test statistics become very complicated. As an alternative, we identify a set of statistics that are ancillary for the location parameter. When the scale parameter is known, Neyman–Pearson's lemma is used, and when the scale parameter is unknown, the LRT is applied to the joint density function of ancillary statistics, in order to obtain a test for the skewness parameter of the distribution. Test for symmetry of the distribution can be deduced as a special case. It is found that power of the proposed tests for symmetry is only marginally less than the power of corresponding classical optimum tests when the location parameter is known, especially for moderate and large sample sizes.  相似文献   

18.
The cumulative residual Kullback–Leibler information is defined on the semi-infinite (non negative) interval. In this paper, we extend the cumulative residual Kullback–Leibler information to the whole real line and propose a general cumulative Kullback–Leibler information. We study its application to a test for normality in comparison with some competing test statistics based on the empirical distribution function including the well-known tests applied in practice like Kolmogorov–Smirnov, Cramer–von Mises, Anderson–Darling, and other existing tests.  相似文献   

19.
In this paper, the maximum likelihood (ML) and Bayes, by using Markov chain Monte Carlo (MCMC), methods are considered to estimate the parameters of three-parameter modified Weibull distribution (MWD(β, τ, λ)) based on a right censored sample of generalized order statistics (gos). Simulation experiments are conducted to demonstrate the efficiency of the proposed methods. Some comparisons are carried out between the ML and Bayes methods by computing the mean squared errors (MSEs), Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates to illustrate the paper. Three real data sets from Weibull(α, β) distribution are introduced and analyzed using the MWD(β, τ, λ) and also using the Weibull(α, β) distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (KS) test statistic, {AIC and BIC} to emphasize that the MWD(β, τ, λ) fits the data better than the other distribution. All parameters are estimated based on type-II censored sample, censored upper record values and progressively type-II censored sample which are generated from the real data sets.  相似文献   

20.
ABSTRACT

Area statistics are sample versions of areas occurring in a probability plot of two distribution functions F and G. This paper presents a unified basis for five statistics of this type. They can be used for various testing problems in the framework of the two sample problem for independent observations, such as testing equality of distributions against inequality or testing stochastic dominance of distributions in one or either direction against nondominance. Though three of the statistics considered have already been suggested in literature, two of them are new and deserve our interest. The finite sample distributions of the statistics (under F=G) can be calculated via recursion formulae. Two tables with critical values of the new statistics are included. The asymptotic distribution of the properly normalized versions of the area statistics are functionals of the Brownian bridge. The distribution functions and quantiles thereof are obtained by Monte Carlo simulation. Finally, the power functions of the two new tests based on area statistics are compared to the power functions of the tests based on the corresponding supremum statistics, i.e., statistics of the Kolmogorov–Smirnov type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号