首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a selection procedure to estimate the multiplicity of the smallest eigenvalue of the covariance matrix. The unknown number of signals present in a radar data can be formulated as the difference between the total number of components in the observed multivariate data vector and the multiplicity of the smallest eigenvalue. In the observed multivariate data, the smallest eigenvalues of the sample covariance matrix may in fact be grouped about some nominal value, as opposed to being identically equal. We propose a selection procedure to estimate the multiplicity of the common smallest eigenvalue, which is significantly smaller than the other eigenvalues. We derive the probability of a correct selection, P(CS), and the least favorable configuration (LFC) for our procedures. Under the LFC, the P(CS) attains its minimum over the preference zone of all eigenvalues. Therefore, a minimum sample size can be determined from the P(CS) under the LFC, P(CS|LFC), in order to implement our new procedure with a guaranteed probability requirement. Numerical examples are presented in order to illustrate our proposed procedure.  相似文献   

2.
Sample covariance matrices play a central role in numerous popular statistical methodologies, for example principal components analysis, Kalman filtering and independent component analysis. However, modern random matrix theory indicates that, when the dimension of a random vector is not negligible with respect to the sample size, the sample covariance matrix demonstrates significant deviations from the underlying population covariance matrix. There is an urgent need to develop new estimation tools in such cases with high‐dimensional data to recover the characteristics of the population covariance matrix from the observed sample covariance matrix. We propose a novel solution to this problem based on the method of moments. When the parametric dimension of the population spectrum is finite and known, we prove that the proposed estimator is strongly consistent and asymptotically Gaussian. Otherwise, we combine the first estimation method with a cross‐validation procedure to select the unknown model dimension. Simulation experiments demonstrate the consistency of the proposed procedure. We also indicate possible extensions of the proposed estimator to the case where the population spectrum has a density.  相似文献   

3.
We present an objective Bayes method for covariance selection in Gaussian multivariate regression models having a sparse regression and covariance structure, the latter being Markov with respect to a directed acyclic graph (DAG). Our procedure can be easily complemented with a variable selection step, so that variable and graphical model selection can be performed jointly. In this way, we offer a solution to a problem of growing importance especially in the area of genetical genomics (eQTL analysis). The input of our method is a single default prior, essentially involving no subjective elicitation, while its output is a closed form marginal likelihood for every covariate‐adjusted DAG model, which is constant over each class of Markov equivalent DAGs; our procedure thus naturally encompasses covariate‐adjusted decomposable graphical models. In realistic experimental studies, our method is highly competitive, especially when the number of responses is large relative to the sample size.  相似文献   

4.
In this article, we consider a robust method of estimating a realized covariance matrix calculated as the sum of cross products of intraday high-frequency returns. According to recent articles in financial econometrics, the realized covariance matrix is essentially contaminated with market microstructure noise. Although techniques for removing noise from the matrix have been studied since the early 2000s, they have primarily investigated a low-dimensional covariance matrix with statistically significant sample sizes. We focus on noise-robust covariance estimation under converse circumstances, that is, a high-dimensional covariance matrix possibly with a small sample size. For the estimation, we utilize a statistical hypothesis test based on the characteristic that the largest eigenvalue of the covariance matrix asymptotically follows a Tracy–Widom distribution. The null hypothesis assumes that log returns are not pure noises. If a sample eigenvalue is larger than the relevant critical value, then we fail to reject the null hypothesis. The simulation results show that the estimator studied here performs better than others as measured by mean squared error. The empirical analysis shows that our proposed estimator can be adopted to forecast future covariance matrices using real data.  相似文献   

5.
Recent work has shown that the Lasso-based regularization is very useful for estimating the high-dimensional inverse covariance matrix. A particularly useful scheme is based on penalizing the ?1 norm of the off-diagonal elements to encourage sparsity. We embed this type of regularization into high-dimensional classification. A two-stage estimation procedure is proposed which first recovers structural zeros of the inverse covariance matrix and then enforces block sparsity by moving non-zeros closer to the main diagonal. We show that the block-diagonal approximation of the inverse covariance matrix leads to an additive classifier, and demonstrate that accounting for the structure can yield better performance accuracy. Effect of the block size on classification is explored, and a class of asymptotically equivalent structure approximations in a high-dimensional setting is specified. We suggest a variable selection at the block level and investigate properties of this procedure in growing dimension asymptotics. We present a consistency result on the feature selection procedure, establish asymptotic lower an upper bounds for the fraction of separative blocks and specify constraints under which the reliable classification with block-wise feature selection can be performed. The relevance and benefits of the proposed approach are illustrated on both simulated and real data.  相似文献   

6.
In this paper, a new test for the equality of the mean vectors between a two groups with the same number of the observations in high-dimensional data. The existing tests for this problem require a strong condition on the population covariance matrix. The proposed test in this paper does not require such conditions for it. This test will be obtained in a general model, that is, the data need not be normally distributed.  相似文献   

7.
Linear mixed-effects model has been widely used in longitudinal data analyses. In practice, the fitting algorithm can fail to converge due to boundary issues of the estimated random-effects covariance matrix G, that is, being near-singular, non-positive definite, or both. Current available algorithms are not computationally optimal because the condition number of matrix G is unnecessarily increased when the random-effects correlation estimate is not zero. We propose an adaptive fitting (AF) algorithm using an optimal linear transformation of the random-effects design matrix. It is a data-driven adaptive procedure, aiming at reducing subsequent random-effects correlation estimates down to zero in the optimal transformed estimation space. Simulations show that AF significantly improves the convergent properties, especially under small sample size, relative large noise and high correlation settings. One real data for insulin-like growth factor protein is used to illustrate the application of this algorithm implemented with software package R (nlme).  相似文献   

8.
For two or more multivariate distributions with common covariance matrix, test statistics for certain special structures of the common covariance matrix are presented when the dimension of the multivariate vectors may exceed the number of such vectors. The test statistics are constructed as functions of location‐invariant estimators defined as U‐statistics, and the corresponding asymptotic theory is used to derive the limiting distributions of the proposed tests. The properties of the test statistics are established under mild and practical assumptions, and the same are numerically demonstrated using simulation results with small or moderate sample sizes and large dimensions.  相似文献   

9.
We propose a new criterion for model selection in prediction problems. The covariance inflation criterion adjusts the training error by the average covariance of the predictions and responses, when the prediction rule is applied to permuted versions of the data set. This criterion can be applied to general prediction problems (e.g. regression or classification) and to general prediction rules (e.g. stepwise regression, tree-based models and neural nets). As a by-product we obtain a measure of the effective number of parameters used by an adaptive procedure. We relate the covariance inflation criterion to other model selection procedures and illustrate its use in some regression and classification problems. We also revisit the conditional bootstrap approach to model selection.  相似文献   

10.
Khuri (1989) tests for the intraclass covariance structure implied by the balanced two-way mixed analysis of variance model by computing wilks' likelihood ratio test statistic using the sample covariance matrix of the vectors of treatment means. In the unbalanced case he uses a linear transformation to augment the treatment-mean vectors to vectors which are expected to satisfy the intraclass structure, and then computes Wilks' statistic using these augmented vectors. We point out that the augmentation process is in fact equivalent to deleting observations until the design is balanced, so that the augmented test actually uses less information than that contained in the original sample means.  相似文献   

11.
12.
Influence functions are derived for the parameters in covariance structure analysis, where the parameters are estimated by minimizing a discrepancy function between the assumed covariance matrix and the sample covariance matrix. The case of confirmatory factor analysis is studied precisely with a numerical example. Comparing with a general procedure called one-step estimation, the proposed procedure has two advantages:1) computing cost is cheaper, 2) the property that arbitrary influence can be decomposed into a fi-nite number of components discussed by Tanaka and Castano-Tostado(1990) can be used for efficient computing and the characterization of a covariance structure model from the sensitivity perspective. A numerical comparison is made among the confirmatory factor analysis and some procedures of ex-ploratory factor analysis by using the decomposition mentioned above.  相似文献   

13.
S. Huet 《Statistics》2015,49(2):239-266
We propose a procedure to test that the expectation of a Gaussian vector is linear against a nonparametric alternative. We consider the case where the covariance matrix of the observations has a block diagonal structure. This framework encompasses regression models with autocorrelated errors, heteroscedastic regression models, mixed-effects models and growth curves. Our procedure does not depend on any prior information about the alternative. We prove that the test is asymptotically of the nominal level and consistent. We characterize the set of vectors on which the test is powerful and prove the classical √log log (n)/n convergence rate over directional alternatives. We propose a bootstrap version of the test as an alternative to the initial one and provide a simulation study in order to evaluate both procedures for small sample sizes when the purpose is to test goodness of fit in a Gaussian mixed-effects model. Finally, we illustrate the procedures using a real data set.  相似文献   

14.
Traditionally, sphericity (i.e., independence and homoscedasticity for raw data) is put forward as the condition to be satisfied by the variance–covariance matrix of at least one of the two observation vectors analyzed for correlation, for the unmodified t test of significance to be valid under the Gaussian and constant population mean assumptions. In this article, the author proves that the sphericity condition is too strong and a weaker (i.e., more general) sufficient condition for valid unmodified t testing in correlation analysis is circularity (i.e., independence and homoscedasticity after linear transformation by orthonormal contrasts), to be satisfied by the variance–covariance matrix of one of the two observation vectors. Two other conditions (i.e., compound symmetry for one of the two observation vectors; absence of correlation between the components of one observation vector, combined with a particular pattern of joint heteroscedasticity in the two observation vectors) are also considered and discussed. When both observation vectors possess the same variance–covariance matrix up to a positive multiplicative constant, the circularity condition is shown to be necessary and sufficient. “Observation vectors” may designate partial realizations of temporal or spatial stochastic processes as well as profile vectors of repeated measures. From the proof, it follows that an effective sample size appropriately defined can measure the discrepancy from the more general sufficient condition for valid unmodified t testing in correlation analysis with autocorrelated and heteroscedastic sample data. The proof is complemented by a simulation study. Finally, the differences between the role of the circularity condition in the correlation analysis and its role in the repeated measures ANOVA (i.e., where it was first introduced) are scrutinized, and the link between the circular variance–covariance structure and the centering of observations with respect to the sample mean is emphasized.  相似文献   

15.
This paper studies the covariance structure and the asymptotic properties of Yule–Walker (YW) type estimators for a bilinear time series model with periodically time-varying coefficients. We give necessary and sufficient conditions ensuring the existence of moments up to eighth order. Expressions of second and third order joint moments, as well as the limiting covariance matrix of the sample moments are given. Strong consistency and asymptotic normality of the YW estimator as well as hypotheses testing via Wald’s procedure are derived. We use a residual bootstrap version to construct bootstrap estimators of the YW estimates. Some simulation results will demonstrate the large sample behavior of the bootstrap procedure.  相似文献   

16.
We propose a new regression-based filter for extracting signals online from multivariate high frequency time series. It separates relevant signals of several variables from noise and (multivariate) outliers.

Unlike parallel univariate filters, the new procedure takes into account the local covariance structure between the single time series components. It is based on high-breakdown estimates, which makes it robust against (patches of) outliers in one or several of the components as well as against outliers with respect to the multivariate covariance structure. Moreover, the trade-off problem between bias and variance for the optimal choice of the window width is approached by choosing the size of the window adaptively, depending on the current data situation.

Furthermore, we present an advanced algorithm of our filtering procedure that includes the replacement of missing observations in real time. Thus, the new procedure can be applied in online-monitoring practice. Applications to physiological time series from intensive care show the practical effect of the proposed filtering technique.  相似文献   

17.
We characterize the general nonnegative-definite and positive-definite joint observation covariance structures for the two-group case such that the two sample mean vectors are independent of the two corresponding sample covariance matrices. Also, the sample covariance matrices are distributed as independent noncentral or central Wishart random matrices. We derive and utilize a representation of the general common non-negative-definite solution to a particular system of matrix equations with idempotent coefficient matrices.  相似文献   

18.
《统计学通讯:理论与方法》2012,41(13-14):2465-2489
The Akaike information criterion, AIC, and Mallows’ C p statistic have been proposed for selecting a smaller number of regressors in the multivariate regression models with fully unknown covariance matrix. All of these criteria are, however, based on the implicit assumption that the sample size is substantially larger than the dimension of the covariance matrix. To obtain a stable estimator of the covariance matrix, it is required that the dimension of the covariance matrix is much smaller than the sample size. When the dimension is close to the sample size, it is necessary to use ridge-type estimators for the covariance matrix. In this article, we use a ridge-type estimators for the covariance matrix and obtain the modified AIC and modified C p statistic under the asymptotic theory that both the sample size and the dimension go to infinity. It is numerically shown that these modified procedures perform very well in the sense of selecting the true model in large dimensional cases.  相似文献   

19.
We consider a non-centered parameterization of the standard random-effects model, which is based on the Cholesky decomposition of the variance-covariance matrix. The regression type structure of the non-centered parameterization allows us to use Bayesian variable selection methods for covariance selection. We search for a parsimonious variance-covariance matrix by identifying the non-zero elements of the Cholesky factors. With this method we are able to learn from the data for each effect whether it is random or not, and whether covariances among random effects are zero. An application in marketing shows a substantial reduction of the number of free elements in the variance-covariance matrix.  相似文献   

20.
Sliced Inverse Regression (SIR; 1991) is a dimension reduction method for reducing the dimension of the predictors without losing regression information. The implementation of SIR requires inverting the covariance matrix of the predictors—which has hindered its use to analyze high-dimensional data where the number of predictors exceed the sample size. We propose random sliced inverse regression (rSIR) by applying SIR to many bootstrap samples, each using a subset of randomly selected candidate predictors. The final rSIR estimate is obtained by aggregating these estimates. A simple variable selection procedure is also proposed using these bootstrap estimates. The performance of the proposed estimates is studied via extensive simulation. Application to a dataset concerning myocardial perfusion diagnosis from cardiac Single Proton Emission Computed Tomography (SPECT) images is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号