首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

2.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

3.
Let Π1,…,Πk be k populations with Πi being Pareto with unknown scale parameter αi and known shape parameter βi;i=1,…,k. Suppose independent random samples (Xi1,…,Xin), i=1,…,k of equal size are drawn from each of k populations and let Xi denote the smallest observation of the ith sample. The population corresponding to the largest Xi is selected. We consider the problem of estimating the scale parameter of the selected population and obtain the uniformly minimum variance unbiased estimator (UMVUE) when the shape parameters are assumed to be equal. An admissible class of linear estimators is derived. Further, a general inadmissibility result for the scale equivariant estimators is proved.  相似文献   

4.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

5.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

6.
7.
Let Π1, …, Π p be p(p≥2) independent Poisson populations with unknown parameters θ1, …, θ p , respectively. Let X i denote an observation from the population Π i , 1≤ip. Suppose a subset of random size, which includes the best population corresponding to the largest (smallest) θ i , is selected using Gupta and Huang [On subset selection procedures for Poisson populations and some applications to the multinomial selection problems, in Applied Statistics, R.P. Gupta, ed., North-Holland, Amsterdam, 1975, pp. 97–109] and (Gupta et al. [On subset selection procedures for Poisson populations, Bull. Malaysian Math. Soc. 2 (1979), pp. 89–110]) selection rule. In this paper, the problem of estimating the average worth of the selected subset is considered under the squared error loss function. The natural estimator is shown to be biased and the UMVUE is obtained using Robbins [The UV method of estimation, in Statistical Decision Theory and Related Topics-IV, S.S. Gupta and J.O. Berger, eds., Springer, New York, vol. 1, 1988, pp. 265–270] UV method of estimation. The natural estimator is shown to be inadmissible, by constructing a class of dominating estimators. Using Monte Carlo simulations, the bias and risk of the natural, dominated and UMVU estimators are computed and compared.  相似文献   

8.
Let X 1, X 2,…, X n be independent exponential random variables with X i having failure rate λ i for i = 1,…, n. Denote by D i:n  = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…, n, where X 0:n ≡ 0. It is shown that if λ n+1 ≤ [≥] λ k for k = 1,…, n then D n:n  ≤ lr D n+1:n+1 and D 1:n  ≤ lr D 2:n+1 [D 2:n+1 ≤ lr D 2:n ], and that if λ i  + λ j  ≥ λ k for all distinct i,j, and k then D n?1:n  ≤ lr D n:n and D n:n+1 ≤ lr D n:n , where ≤ lr denotes the likelihood ratio order. We also prove that D 1:n  ≤ lr D 2:n for n ≥ 2 and D 2:3 ≤ lr D 3:3 for all λ i 's.  相似文献   

9.
Abstract

Let the data from the ith treatment/population follow a distribution with cumulative distribution function (cdf) F i (x) = F[(x ? μ i )/θ i ], i = 1,…, k (k ≥ 2). Here μ i (?∞ < μ i  < ∞) is the location parameter, θ i i  > 0) is the scale parameter and F(?) is any absolutely continuous cdf, i.e., F i (?) is a member of location-scale family, i = 1,…, k. In this paper, we propose a class of tests to test the null hypothesis H 0 ? θ1 = · = θ k against the simple ordered alternative H A  ? θ1 ≤ · ≤ θ k with at least one strict inequality. In literature, use of sample quasi range as a measure of dispersion has been advocated for small sample size or sample contaminated by outliers [see David, H. A. (1981). Order Statistics. 2nd ed. New York: John Wiley, Sec. 7.4]. Let X i1,…, X in be a random sample of size n from the population π i and R ir  = X i:n?r  ? X i:r+1, r = 0, 1,…, [n/2] ? 1 be the sample quasi range corresponding to this random sample, where X i:j represents the jth order statistic in the ith sample, j = 1,…, n; i = 1,…, k and [x] is the greatest integer less than or equal to x. The proposed class of tests, for the general location scale setup, is based on the statistic W r  = max1≤i<jk (R jr /R ir ). The test is reject H 0 for large values of W r . The construction of a three-decision procedure and simultaneous one-sided lower confidence bounds for the ratios, θ j i , 1 ≤ i < j ≤ k, have also been discussed with the help of the critical constants of the test statistic W r . Applications of the proposed class of tests to two parameter exponential and uniform probability models have been discussed separately with necessary tables. Comparisons of some members of our class with the tests of Gill and Dhawan [Gill A. N., Dhawan A. K. (1999). A One-sided test for testing homogeneity of scale parameters against ordered alternative. Commun. Stat. – Theory and Methods 28(10):2417–2439] and Kochar and Gupta [Kochar, S. C., Gupta, R. P. (1985). A class of distribution-free tests for testing homogeneity of variances against ordered alternatives. In: Dykstra, R. et al., ed. Proceedings of the Conference on Advances in Order Restricted Statistical Inference at Iowa city. Springer Verlag, pp. 169–183], in terms of simulated power, are also presented.  相似文献   

10.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

11.
This paper introduces a new class of bivariate lifetime distributions. Let {Xi}i ? 1 and {Yi}i ? 1 be two independent sequences of independent and identically distributed positive valued random variables. Define T1 = min?(X1, …, XM) and T2 = min?(Y1, …, YN), where (M, N) has a discrete bivariate phase-type distribution, independent of {Xi}i ? 1 and {Yi}i ? 1. The joint survival function of (T1, T2) is studied.  相似文献   

12.
For each n, k ∈ ?, let Y i  = (Y i1, Y i2,…, Y ik ), 1 ≤ i ≤ n be independent random vectors in ? k with finite third moments and Y ij are independent for all j = 1, 2,…, k. In this article, we use the Stein's technique to find constants in uniform bounds for multidimensional Berry-Esseen inequality on a closed sphere, a half plane and a rectangular set.  相似文献   

13.
We consider the random variable X that is not Gaussian but for which X c , where c = (2k + 1)/(2j + 1) with k, j ? {0, 1,…}, is approximately Gaussian. A variable of this type is used to model the errors made by meteorologists when forecasting temperatures.  相似文献   

14.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

15.
The large nonparametric model in this note is a statistical model with the family ? of all continuous and strictly increasing distribution functions. In the abundant literature of the subject, there are many proposals for nonparametric estimators that are applicable in the model. Typically the kth order statistic X k:n is taken as a simplest estimator, with k = [nq], or k = [(n + 1)q], or k = [nq] + 1, etc. Often a linear combination of two consecutive order statistics is considered. In more sophisticated constructions, different L-statistics (e.g., Harrel–Davis, Kaigh–Lachenbruch, Bernstein, kernel estimators) are proposed. Asymptotically the estimators do not differ substantially, but if the sample size n is fixed, which is the case of our concern, differences may be serious. A unified treatment of quantile estimators in the large, nonparametric statistical model is developed.  相似文献   

16.
Abstract. We consider N independent stochastic processes (X i (t), t ∈ [0,T i ]), i=1,…, N, defined by a stochastic differential equation with drift term depending on a random variable φ i . The distribution of the random effect φ i depends on unknown parameters which are to be estimated from the continuous observation of the processes Xi. We give the expression of the exact likelihood. When the drift term depends linearly on the random effect φ i and φ i has Gaussian distribution, an explicit formula for the likelihood is obtained. We prove that the maximum likelihood estimator is consistent and asymptotically Gaussian, when T i =T for all i and N tends to infinity. We discuss the case of discrete observations. Estimators are computed on simulated data for several models and show good performances even when the length time interval of observations is not very large.  相似文献   

17.
Let πi(i=1,2,…K) be independent U(0,?i) populations. Let Yi denote the largest observation based on a random sample of size n from the i-th population. for selecting the best populaton, that is the one associated with the largest ?i, we consider the natural selection rule, according to which the population corresponding to the largest Yi is selected. In this paper, the estimation of M. the mean of the selected population is considered. The natural estimator is positively biased. The UMVUE (uniformly minimum variance unbiased estimator) of M is derived using the (U,V)-method of Robbins (1987) and its asymptotic distribution is found. We obtain a minimax estimator of M for K≤4 and a class of admissible estimators among those of the form cYmax. For the case K = 2, the UMVUE is improved using the Brewster-Zidek (1974) Technique with respect to the squared error loss function L1 and the scale-invariant loss function L2. For the case K = 2, the MSE'S of all the estimators are compared for selected values of n and ρ=?1/(?1+?2).  相似文献   

18.
We discuss some problems connected with the role of record values and maximal values generated by sequences of random variables X1, X2,…, X n in the process of the growth of sums X1 +···+ Xn, n = 1, 2,….  相似文献   

19.
Consider using values of variables X 1, X 2,…, X p to classify entities into one of two classes. Kernel-based procedures such as support vector machines (SVMs) are well suited for this task. In general, the classification accuracy of SVMs can be substantially improved if instead of all p candidate variables, a smaller subset of (say m) variables is used. A new two-step approach to variable selection for SVMs is therefore proposed: best variable subsets of size k = 1,2,…, p are first identified, and then a new data-dependent criterion is used to determine a value for m. The new approach is evaluated in a Monte Carlo simulation study, and on a sample of data sets.  相似文献   

20.
Suppose that data {(x l,i,n , y l,i,n ): l?=?1, …, k; i?=?1, …, n} are observed from the regression models: Y l,i,n ?=?m l (x l,i,n )?+?? l,i,n , l?=?1, …, k, where the regression functions {m l } l=1 k are unknown and the random errors {? l,i,n } are dependent, following an MA(∞) structure. A new test is proposed for testing the hypothesis H 0: m 1?=?·?·?·?=?m k , without assuming that {m l } l=1 k are in a parametric family. The criterion of the test derives from a Crámer-von-Mises-type functional based on different distances between {[mcirc]} l and {[mcirc]} s , l?≠?s, l, s?=?1, …, k, where {[mcirc] l } l=1 k are nonparametric Gasser–Müller estimators of {m l } l=1 k . A generalization of the test to the case of unequal design points, with different sample sizes {n l } l=1 k and different design densities {f l } l=1 k , is also considered. The asymptotic normality of the test statistic is obtained under general conditions. Finally, a simulation study and an analysis with real data show a good behavior of the proposed test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号