首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tweedie regression models (TRMs) provide a flexible family of distributions to deal with non-negative right-skewed data and can handle continuous data with probability mass at zero. Estimation and inference of TRMs based on the maximum likelihood (ML) method are challenged by the presence of an infinity sum in the probability function and non-trivial restrictions on the power parameter space. In this paper, we propose two approaches for fitting TRMs, namely quasi-likelihood (QML) and pseudo-likelihood (PML). We discuss their asymptotic properties and perform simulation studies to compare our methods with the ML method. We show that the QML method provides asymptotically efficient estimation for regression parameters. Simulation studies showed that the QML and PML approaches present estimates, standard errors and coverage rates similar to the ML method. Furthermore, the second-moment assumptions required by the QML and PML methods enable us to extend the TRMs to the class of quasi-TRMs in Wedderburn's style. It allows to eliminate the non-trivial restriction on the power parameter space, and thus provides a flexible regression model to deal with continuous data. We provide an R implementation and illustrate the application of TRMs using three data sets.  相似文献   

2.
The Tweedie compound Poisson distribution is a subclass of the exponential dispersion family with a power variance function, in which the value of the power index lies in the interval (1,2). It is well known that the Tweedie compound Poisson density function is not analytically tractable, and numerical procedures that allow the density to be accurately and fast evaluated did not appear until fairly recently. Unsurprisingly, there has been little statistical literature devoted to full maximum likelihood inference for Tweedie compound Poisson mixed models. To date, the focus has been on estimation methods in the quasi-likelihood framework. Further, Tweedie compound Poisson mixed models involve an unknown variance function, which has a significant impact on hypothesis tests and predictive uncertainty measures. The estimation of the unknown variance function is thus of independent interest in many applications. However, quasi-likelihood-based methods are not well suited to this task. This paper presents several likelihood-based inferential methods for the Tweedie compound Poisson mixed model that enable estimation of the variance function from the data. These algorithms include the likelihood approximation method, in which both the integral over the random effects and the compound Poisson density function are evaluated numerically; and the latent variable approach, in which maximum likelihood estimation is carried out via the Monte Carlo EM algorithm, without the need for approximating the density function. In addition, we derive the corresponding Markov Chain Monte Carlo algorithm for a Bayesian formulation of the mixed model. We demonstrate the use of the various methods through a numerical example, and conduct an array of simulation studies to evaluate the statistical properties of the proposed estimators.  相似文献   

3.
Abstract

Variable selection in finite mixture of regression (FMR) models is frequently used in statistical modeling. The majority of applications of variable selection in FMR models use a normal distribution for regression error. Such assumptions are unsuitable for a set of data containing a group or groups of observations with heavy tails and outliers. In this paper, we introduce a robust variable selection procedure for FMR models using the t distribution. With appropriate selection of the tuning parameters, the consistency and the oracle property of the regularized estimators are established. To estimate the parameters of the model, we develop an EM algorithm for numerical computations and a method for selecting tuning parameters adaptively. The parameter estimation performance of the proposed model is evaluated through simulation studies. The application of the proposed model is illustrated by analyzing a real data set.  相似文献   

4.
ABSTRACT

Non-stationarity in bivariate time series of counts may be induced by a number of time-varying covariates affecting the bivariate responses due to which the innovation terms of the individual series as well as the bivariate dependence structure becomes non-stationary. So far, in the existing models, the innovation terms of individual INAR(1) series and the dependence structure are assumed to be constant even though the individual time series are non-stationary. Under this assumption, the reliability of the regression and correlation estimates is questionable. Besides, the existing estimation methodologies such as the conditional maximum likelihood (CMLE) and the composite likelihood estimation are computationally intensive. To address these issues, this paper proposes a BINAR(1) model where the innovation series follow a bivariate Poisson distribution under some non-stationary distributional assumptions. The method of generalized quasi-likelihood (GQL) is used to estimate the regression effects while the serial and bivariate correlations are estimated using a robust moment estimation technique. The application of model and estimation method is made in the simulated data. The GQL method is also compared with the CMLE, generalized method of moments (GMM) and generalized estimating equation (GEE) approaches where through simulation studies, it is shown that GQL yields more efficient estimates than GMM and equally or slightly more efficient estimates than CMLE and GEE.  相似文献   

5.
Pharmaceutical companies and manufacturers of food products are legally required to label the product's shelf‐life on the packaging. For pharmaceutical products the requirements for how to determine the shelf‐life are highly regulated. However, the regulatory documents do not specifically define the shelf‐life. Instead, the definition is implied through the estimation procedure. In this paper, the focus is on the situation where multiple batches are used to determine a label shelf‐life that is applicable to all future batches. Consequently, the short‐comings of existing estimation approaches are discussed. These are then addressed by proposing a new definition of shelf‐life and label shelf‐life, where greater emphasis is placed on within and between batch variability. Furthermore, an estimation approach is developed and the properties of this approach are illustrated using a simulation study. Finally, the approach is applied to real data.  相似文献   

6.
Several approaches have been suggested for fitting linear regression models to censored data. These include Cox's propor­tional hazard models based on quasi-likelihoods. Methods of fitting based on least squares and maximum likelihoods have also been proposed. The methods proposed so far all require special purpose optimization routines. We describe an approach here which requires only a modified standard least squares routine.

We present methods for fitting a linear regression model to censored data by least squares and method of maximum likelihood. In the least squares method, the censored values are replaced by their expectations, and the residual sum of squares is minimized. Several variants are suggested in the ways in which the expect­ation is calculated. A parametric (assuming a normal error model) and two non-parametric approaches are described. We also present a method for solving the maximum likelihood equations in the estimation of the regression parameters in the censored regression situation. It is shown that the solutions can be obtained by a recursive algorithm which needs only a least squares routine for optimization. The suggested procesures gain considerably in computational officiency. The Stanford Heart Transplant data is used to illustrate the various methods.  相似文献   

7.
Binary dynamic fixed and mixed logit models are extensively studied in the literature. These models are developed to examine the effects of certain fixed covariates through a parametric regression function as a part of the models. However, there are situations where one may like to consider more covariates in the model but their direct effect is not of interest. In this paper we propose a generalization of the existing binary dynamic logit (BDL) models to the semi-parametric longitudinal setup to address this issue of additional covariates. The regression function involved in such a semi-parametric BDL model contains (i) a parametric linear regression function in some primary covariates, and (ii) a non-parametric function in certain secondary covariates. We use a simple semi-parametric conditional quasi-likelihood approach for consistent estimation of the non-parametric function, and a semi-parametric likelihood approach for the joint estimation of the main regression and dynamic dependence parameters of the model. The finite sample performance of the estimation approaches is examined through a simulation study. The asymptotic properties of the estimators are also discussed. The proposed model and the estimation approaches are illustrated by reanalysing a longitudinal infectious disease data.  相似文献   

8.
In this paper, a unified maximum marginal likelihood estimation procedure is proposed for the analysis of right censored data using general partially linear varying-coefficient transformation models (GPLVCTM), which are flexible enough to include many survival models as its special cases. Unknown functional coefficients in the models are approximated by cubic B-spline polynomial. We estimate B-spline coefficients and regression parameters by maximizing marginal likelihood function. One advantage of this procedure is that it is free of both baseline and censoring distribution. Through simulation studies and a real data application (VA data from the Veteran's Administration Lung Cancer Study Clinical Trial), we illustrate that the proposed estimation procedure is accurate, stable and practical.  相似文献   

9.
Bridge penalized regression has many desirable statistical properties such as unbiasedness, sparseness as well as ‘oracle’. In Bayesian framework, bridge regularized penalty can be implemented based on generalized Gaussian distribution (GGD) prior. In this paper, we incorporate Bayesian bridge-randomized penalty and its adaptive version into the quantile regression (QR) models with autoregressive perturbations to conduct Bayesian penalization estimation. Employing the working likelihood of the asymmetric Laplace distribution (ALD) perturbations, the Bayesian joint hierarchical models are established. Based on the mixture representations of the ALD and generalized Gaussian distribution (GGD) priors of coefficients, the hybrid algorithms based on Gibbs sampler and Metropolis-Hasting sampler are provided to conduct fully Bayesian posterior estimation. Finally, the proposed Bayesian procedures are illustrated by some simulation examples and applied to a real data application of the electricity consumption.  相似文献   

10.
Abstract

Linear mixed effects models have been popular in small area estimation problems for modeling survey data when the sample size in one or more areas is too small for reliable inference. However, when the data are restricted to a bounded interval, the linear model may be inappropriate, particularly if the data are near the boundary. Nonlinear sampling models are becoming increasingly popular for small area estimation problems when the normal model is inadequate. This paper studies the use of a beta distribution as an alternative to the normal distribution as a sampling model for survey estimates of proportions which take values in (0, 1). Inference for small area proportions based on the posterior distribution of a beta regression model ensures that point estimates and credible intervals take values in (0, 1). Properties of a hierarchical Bayesian small area model with a beta sampling distribution and logistic link function are presented and compared to those of the linear mixed effect model. Propriety of the posterior distribution using certain noninformative priors is shown, and behavior of the posterior mean as a function of the sampling variance and the model variance is described. An example using 2010 Small Area Income and Poverty Estimates (SAIPE) data is given, and a numerical example studying small sample properties of the model is presented.  相似文献   

11.
Left-truncated and right-censored (LTRC) data are encountered frequently due to a prevalent cohort sampling in follow-up studies. Because of the skewness of the distribution of survival time, quantile regression is a useful alternative to the Cox's proportional hazards model and the accelerated failure time model for survival analysis. In this paper, we apply the quantile regression model to LTRC data and develops an unbiased estimating equation for regression coefficients. The proposed estimation methods use the inverse probabilities of truncation and censoring weighting technique. The resulting estimator is uniformly consistent and asymptotically normal. The finite-sample performance of the proposed estimation methods is also evaluated using extensive simulation studies. Finally, analysis of real data is presented to illustrate our proposed estimation methods.  相似文献   

12.
ABSTRACT

In economics and government statistics, aggregated data instead of individual level data are usually reported for data confidentiality and for simplicity. In this paper we develop a method of flexibly estimating the probability density function of the population using aggregated data obtained as group averages when individual level data are grouped according to quantile limits. The kernel density estimator has been commonly applied to such data without taking into account the data aggregation process and has been shown to perform poorly. Our method models the quantile function as an integral of the exponential of a spline function and deduces the density function from the quantile function. We match the aggregated data to their theoretical counterpart using least squares, and regularize the estimation by using the squared second derivatives of the density function as the penalty function. A computational algorithm is developed to implement the method. Application to simulated data and US household income survey data show that our penalized spline estimator can accurately recover the density function of the underlying population while the common use of kernel density estimation is severely biased. The method is applied to study the dynamic of China's urban income distribution using published interval aggregated data of 1985–2010.  相似文献   

13.
The skew-generalized-normal distribution [Arellano-Valle, RB, Gómez, HW, Quintana, FA. A new class of skew-normal distributions. Comm Statist Theory Methods 2004;33(7):1465–1480] is a class of asymmetric normal distributions, which contains the normal and skew-normal distributions as special cases. The main virtues of this distribution is that it is easy to simulate from and it also supplies a genuine expectation–maximization (EM) algorithm for maximum likelihood estimation. In this paper, we extend the EM algorithm for linear regression models assuming skew-generalized-normal random errors and we develop a diagnostics analyses via local influence and generalized leverage, following Zhu and Lee's approach. This is because Cook's well-known approach would be more complicated to use to obtain measures of local influence. Finally, results obtained for a real data set are reported, illustrating the usefulness of the proposed method.  相似文献   

14.
Summary. We propose a simple estimation procedure for a proportional hazards frailty regression model for clustered survival data in which the dependence is generated by a positive stable distribution. Inferences for the frailty parameter can be obtained by using output from Cox regression analyses. The computational burden is substantially less than that of the other approaches to estimation. The large sample behaviour of the estimator is studied and simulations show that the approximations are appropriate for use with realistic sample sizes. The methods are motivated by studies of familial associations in the natural history of diseases. Their practical utility is illustrated with sib pair data from Beaver Dam, Wisconsin.  相似文献   

15.
We have previously(Segal and Neuhaus, 1993) devised methods for obtaining marginal regression coefficients and associated variance estimates for multivariate survival data, using a synthesis of the Poisson regression formulation for univariate censored survival analysis and generalized estimating equations (GEE's). The method is parametric in that a baseline survival distribution is specified. Analogous semiparametric models, with unspecified baseline survival, have also been developed (Wei, Lin and Weissfeld, 1989; Lin, 1994).Common to both these approaches is the provision of robust variances for the regression parameters. However, none of this work has addressed the more difficult area of dependence estimation. While GEE approaches ostensibly provide such estimates, we show that there are problems adopting these with multivariate survival data. Further, we demonstrate that these problems can affect estimation of the regression coefficients themselves. An alternate, ad hoc approach to dependence estimation, based on design effects, is proposed and evaluated via simulation and illustrative examples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
ABSTRACT

This paper analyses the behaviour of the goodness-of-fit tests for regression models. To this end, it uses statistics based on an estimation of the integrated regression function with missing observations either in the response variable or in some of the covariates. It proposes several versions of one empirical process, constructed from a previous estimation, that uses only the complete observations or replaces the missing observations with imputed values. In the case of missing covariates, a link model is used to fill the missing observations with other complete covariates. In all the situations, Bootstrap methodology is used to calibrate the distribution of the test statistics. A broad simulation study compares the different procedures based on empirical regression methodology, with smoothed tests previously studied in the literature. The comparison reflects the effect of the correlation between the covariates in the tests based on the imputed sample for missing covariates. In addition, the paper proposes a computational binning strategy to evaluate the tests based on an empirical process for large data sets. Finally, two applications to real data illustrate the performance of the tests.  相似文献   

17.
Value at Risk (VaR) forecasts can be produced from conditional autoregressive VaR models, estimated using quantile regression. Quantile modeling avoids a distributional assumption, and allows the dynamics of the quantiles to differ for each probability level. However, by focusing on a quantile, these models provide no information regarding expected shortfall (ES), which is the expectation of the exceedances beyond the quantile. We introduce a method for predicting ES corresponding to VaR forecasts produced by quantile regression models. It is well known that quantile regression is equivalent to maximum likelihood based on an asymmetric Laplace (AL) density. We allow the density's scale to be time-varying, and show that it can be used to estimate conditional ES. This enables a joint model of conditional VaR and ES to be estimated by maximizing an AL log-likelihood. Although this estimation framework uses an AL density, it does not rely on an assumption for the returns distribution. We also use the AL log-likelihood for forecast evaluation, and show that it is strictly consistent for the joint evaluation of VaR and ES. Empirical illustration is provided using stock index data. Supplementary materials for this article are available online.  相似文献   

18.
Abstract

In this paper, we perform the analysis of the SUR Tobit model for three left-censored dependent variables by modeling its nonlinear dependence structure through the one-parameter Clayton copula. For unbiased parameter estimation, we propose an extension of the Inference Function for Augmented Margins (IFAM) method to the trivariate case. The interval estimation for the model parameters using resampling procedures is also discussed. We perform simulation and empirical studies, whose satisfactory results indicate the good performance of the proposed model and methods. Our procedure is illustrated using real data on consumption of food items (salad dressings, lettuce, tomato) by Americans.  相似文献   

19.
We generalize Wedderburn's (1974) notion of quasi-likelihood to define a quasi-Bayesian approach for nonlinear estimation problems by allowing the full distributional assumptions about the random component in the classical Bayesian approach to be replaced by much weaker assumptions in which only the first and second moments of the prior distribution are specified. The formulas given are based on the Gauss-Newton estimating procedure and require only the first and second moments of the distributions involved. The use of GLIM package to solve for the estimation problems considered is discussed. Applications are made to estimation problems in inverse linear regression, regression models with both variables subject to error and also to the estimation of the size of animal populations. Some numerical illustrations are reported. For the inverse linear regression problem, comparisons with ordinary Bayesianand other techniques are considered.  相似文献   

20.
ABSTRACT

This paper proposes a power-transformed linear quantile regression model for the residual lifetime of competing risks data. The proposed model can describe the association between any quantile of a time-to-event distribution among survivors beyond a specific time point and the covariates. Under covariate-dependent censoring, we develop an estimation procedure with two steps, including an unbiased monotone estimating equation for regression parameters and cumulative sum processes for the Box–Cox transformation parameter. The asymptotic properties of the estimators are also derived. We employ an efficient bootstrap method for the estimation of the variance–covariance matrix. The finite-sample performance of the proposed approaches are evaluated through simulation studies and a real example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号