首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

2.
Let X 1, X 2,…, X n be independent exponential random variables with X i having failure rate λ i for i = 1,…, n. Denote by D i:n  = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…, n, where X 0:n ≡ 0. It is shown that if λ n+1 ≤ [≥] λ k for k = 1,…, n then D n:n  ≤ lr D n+1:n+1 and D 1:n  ≤ lr D 2:n+1 [D 2:n+1 ≤ lr D 2:n ], and that if λ i  + λ j  ≥ λ k for all distinct i,j, and k then D n?1:n  ≤ lr D n:n and D n:n+1 ≤ lr D n:n , where ≤ lr denotes the likelihood ratio order. We also prove that D 1:n  ≤ lr D 2:n for n ≥ 2 and D 2:3 ≤ lr D 3:3 for all λ i 's.  相似文献   

3.
Let X1:n ≤ X2:n ≤···≤ Xn:n denote the order statistics of a sample of n independent random variables X1, X2,…, Xn, all identically distributed as some X. It is shown that if X has a log-convex [log-concave] density function, then the general spacing vector (Xk1:n, Xk2:n ? Xk1:n,…, Xkr:n ? Xkr?1:n) is MTP2 [S-MRR2] whenever 1 ≤ k1 < k2 <···< kr ≤ n and 1 ≤ r ≤ n. Multivariate likelihood ratio ordering of such general spacing vectors corresponding to two random samples is also considered. These extend some of the results in the literature for usual spacing vectors.  相似文献   

4.
Let X 1, X 2,… be a sequence of independent and identically distributed random variables, and let Y n , n = K, K + 1, K + 2,… be the corresponding backward moving average of order K. At epoch n ≥ K, the process Y n will be off target by the input X n if it exceeds a threshold. By introducing a two-state Markov chain, we define a level of significance (1 ? a)% to be the percentage of times that the moving average process stays on target. We establish a technique to evaluate, or estimate, a threshold, to guarantee that {Y n } will stay (1 ? a)% of times on target, for a given (1 ? a)%. It is proved that if the distribution of the inputs is exponential or normal, then the threshold will be a linear function in the mean of the distribution of inputs μ X . The slope and intercept of the line, in each case, are specified. It is also observed that for the gamma inputs, the threshold is merely linear in the reciprocal of the scale parameter. These linear relationships can be easily applied to estimate the desired thresholds by samples from the inputs.  相似文献   

5.
For n ≥ 1, let Xnl,…, Xnn be independent integer-valued random variables, and define Sn = Xnl+···+Xnn. In a recent paper, we obtained a simple proof for the convergence of the distribution of Sn to a Poisson distribution under very general conditions. In this paper, we extend that result to the multidimensional case.  相似文献   

6.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

7.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

8.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

9.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

10.
ABSTRACT

Suppose independent random samples are available from k(k ≥ 2) exponential populations ∏1,…,∏ k with a common location θ and scale parameters σ1,…,σ k , respectively. Let X i and Y i denote the minimum and the mean, respectively, of the ith sample, and further let X = min{X 1,…, X k } and T i  = Y i  ? X; i = 1,…, k. For selecting a nonempty subset of {∏1,…,∏ k } containing the best population (the one associated with max{σ1,…,σ k }), we use the decision rule which selects ∏ i if T i  ≥ c max{T 1,…,T k }, i = 1,…, k. Here 0 < c ≤ 1 is chosen so that the probability of including the best population in the selected subset is at least P* (1/k ≤ P* < 1), a pre-assigned level. The problem is to estimate the average worth W of the selected subset, the arithmetic average of means of selected populations. In this article, we derive the uniformly minimum variance unbiased estimator (UMVUE) of W. The bias and risk function of the UMVUE are compared numerically with those of analogs of the best affine equivariant estimator (BAEE) and the maximum likelihood estimator (MLE).  相似文献   

11.
Let (X1,X2, …,Xn) be jointly distributed random variables. Define Xn:n = max(X1,X2, …,Xn).Bounds on E(Xn:n), obtained by putting constraints on the distributions and/or dependence structure of the Xi's, are surveyed.  相似文献   

12.
Abstract

Let the data from the ith treatment/population follow a distribution with cumulative distribution function (cdf) F i (x) = F[(x ? μ i )/θ i ], i = 1,…, k (k ≥ 2). Here μ i (?∞ < μ i  < ∞) is the location parameter, θ i i  > 0) is the scale parameter and F(?) is any absolutely continuous cdf, i.e., F i (?) is a member of location-scale family, i = 1,…, k. In this paper, we propose a class of tests to test the null hypothesis H 0 ? θ1 = · = θ k against the simple ordered alternative H A  ? θ1 ≤ · ≤ θ k with at least one strict inequality. In literature, use of sample quasi range as a measure of dispersion has been advocated for small sample size or sample contaminated by outliers [see David, H. A. (1981). Order Statistics. 2nd ed. New York: John Wiley, Sec. 7.4]. Let X i1,…, X in be a random sample of size n from the population π i and R ir  = X i:n?r  ? X i:r+1, r = 0, 1,…, [n/2] ? 1 be the sample quasi range corresponding to this random sample, where X i:j represents the jth order statistic in the ith sample, j = 1,…, n; i = 1,…, k and [x] is the greatest integer less than or equal to x. The proposed class of tests, for the general location scale setup, is based on the statistic W r  = max1≤i<jk (R jr /R ir ). The test is reject H 0 for large values of W r . The construction of a three-decision procedure and simultaneous one-sided lower confidence bounds for the ratios, θ j i , 1 ≤ i < j ≤ k, have also been discussed with the help of the critical constants of the test statistic W r . Applications of the proposed class of tests to two parameter exponential and uniform probability models have been discussed separately with necessary tables. Comparisons of some members of our class with the tests of Gill and Dhawan [Gill A. N., Dhawan A. K. (1999). A One-sided test for testing homogeneity of scale parameters against ordered alternative. Commun. Stat. – Theory and Methods 28(10):2417–2439] and Kochar and Gupta [Kochar, S. C., Gupta, R. P. (1985). A class of distribution-free tests for testing homogeneity of variances against ordered alternatives. In: Dykstra, R. et al., ed. Proceedings of the Conference on Advances in Order Restricted Statistical Inference at Iowa city. Springer Verlag, pp. 169–183], in terms of simulated power, are also presented.  相似文献   

13.
14.
Let X1, , X2, …, X be distributed N(µ, σ2 x), let Y1, Y2, …, Y"n be distributed N(µ, σ2 y), and let X , X , … Xm, Y1, Y2, …, Yn be mutually independent. In this paper a method for setting confidence intervals on the common mean µ is proposed and evaluated.  相似文献   

15.
We consider the random variable X that is not Gaussian but for which X c , where c = (2k + 1)/(2j + 1) with k, j ? {0, 1,…}, is approximately Gaussian. A variable of this type is used to model the errors made by meteorologists when forecasting temperatures.  相似文献   

16.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

17.
In this article, a semi-Markovian random walk with delay and a discrete interference of chance (X(t)) is considered. It is assumed that the random variables ζ n , n = 1, 2,…, which describe the discrete interference of chance form an ergodic Markov chain with ergodic distribution which is a gamma distribution with parameters (α, λ). Under this assumption, the asymptotic expansions for the first four moments of the ergodic distribution of the process X(t) are derived, as λ → 0. Moreover, by using the Riemann zeta-function, the coefficients of these asymptotic expansions are expressed by means of numerical characteristics of the summands, when the process considered is a semi-Markovian Gaussian random walk with small drift β.  相似文献   

18.
Let Xl,…,Xn (Yl,…,Ym) be a random sample from an absolutely continuous distribution with distribution function F(G).A class of distribution-free tests based on U-statistics is proposed for testing the equality of F and G against the alternative that X's are more dispersed then Y's. Let 2 ? C ? n and 2 ? d ? m be two fixed integers. Let ?c,d(Xil,…,Xic ; Yjl,…,Xjd)=1(-1)when max as well as min of {Xil,…,Xic ; Yjl,…,Yjd } are some Xi's (Yj's)and zero oterwise. Let Sc,d be the U-statistic corresponding to ?c,d.In case of equal sample sizes, S22 is equivalent to Mood's Statistic.Large values of Sc,d are significant and these tests are quite efficient  相似文献   

19.
A sequence of independent observations X 1, X 2, …, X m , X m+1, …, X n was observed on some measurable characteristic X in statistical process control. The shift in process mean is reflected in the sequence after X m . The Bayes estimators of shift point m, and past and future process means, μ1 and μ2, are derived using various priors and loss functions. An application in statistical process control is given and a simulation study of the estimators is carried out.  相似文献   

20.
In this article we obtain some novel results on pairwise quasi-asymptotically independent (pQAI) random variables. Concretely speaking, let X1, …, Xn be n real-valued pQAI random variables, and W1, …, Wn be another n non negative and arbitrarily dependent random variables, but independent of X1, …, Xn. Under some mild conditions, we prove that W1X1, …, WnXn are still pQAI as well. Our result is in a general setting whether the primary random variables X1, …, Xn are heavy-tailed or not. Finally, a special case of above result is applied to risk theory for investigating the finite-time ruin probability for a discrete-time risk model with a wide type of dependence structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号