首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents some powerful omnibus tests for multivariate normality based on the likelihood ratio and the characterizations of the multivariate normal distribution. The power of the proposed tests is studied against various alternatives via Monte Carlo simulations. Simulation studies show our tests compare well with other powerful tests including multivariate versions of the Shapiro–Wilk test and the Anderson–Darling test.  相似文献   

2.
In this study, we present different estimation procedures for the parameters of the Poisson–exponential distribution, such as the maximum likelihood, method of moments, modified moments, ordinary and weighted least-squares, percentile, maximum product of spacings, Cramer–von Mises and the Anderson–Darling maximum goodness-of-fit estimators and compare them using extensive numerical simulations. We showed that the Anderson–Darling estimator is the most efficient for estimating the parameters of the proposed distribution. Our proposed methodology was also illustrated in three real data sets related to the minimum, average and the maximum flows during October at São Carlos River in Brazil demonstrating that the PE distribution is a simple alternative to be used in hydrological applications.  相似文献   

3.
The use of statistics based on the empirical distribution function is analysed for estimation of the scale, shape, and location parameters of the three-parameter Weibull distribution. The resulting maximum goodness of fit (MGF) estimators are compared with their maximum likelihood counterparts. In addition to the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling statistics, some related empirical distribution function statistics using different weight functions are considered. The results show that the MGF estimators of the scale and shape parameters are usually more efficient than the maximum likelihood estimators when the shape parameter is smaller than 2, particularly if the sample size is large.  相似文献   

4.
Anderson–Darling goodness-of-fit test percentage points are given for the three-parameter lognormal distribution for both the cases of positive skewness and a lower bound and negative skewness and an upper bound. The focus is on the most practical case when all parameters are unknown and must be estimated from the sample data. Fitted response functions for the critical values based on the shape parameter and sample size are reported to avoid using a vast array of tables.  相似文献   

5.
In this article, we consider some nonparametric goodness-of-fit tests for right censored samples, viz., the modified Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling, and Nikulin–Rao–Robson χ2 tests. We also consider an approach based on a transformation of the original censored sample to a complete one and the subsequent application of classical goodness-of-fit tests to the pseudo-complete sample. We then compare these tests in terms of power in the case of Type II censored data along with the power of the Neyman–Pearson test, and draw some conclusions. Finally, we present an illustrative example.  相似文献   

6.
The use of goodness-of-fit test based on Anderson–Darling (AD) statistic is discussed, with reference to the composite hypothesis that a sample of observations comes from a generalized Rayleigh distribution whose parameters are unspecified. Monte Carlo simulation studies were performed to calculate the critical values for AD test. These critical values are then used for testing whether a set of observations follows a generalized Rayleigh distribution when the scale and shape parameters are unspecified and are estimated from the sample. Functional relationship between the critical values of AD is also examined for each shape parameter (α), sample size (n) and significance level (γ). The power study is performed with the hypothesized generalized Rayleigh against alternate distributions.  相似文献   

7.
A new approach of randomization is proposed to construct goodness of fit tests generally. Some new test statistics are derived, which are based on the stochastic empirical distribution function (EDF). Note that the stochastic EDF for a set of given sample observations is a randomized distribution function. By substituting the stochastic EDF for the classical EDF in the Kolmogorov–Smirnov, Cramér–von Mises, Anderson–Darling, Berk–Jones, and Einmahl–Mckeague statistics, randomized statistics are derived, of which the qth quantile and the expectation are chosen as test statistics. In comparison to existing tests, it is shown, by a simulation study, that the new test statistics are generally more powerful than the corresponding ones based on the classical EDF or modified EDF in most cases.  相似文献   

8.
A goodness-of-fit test procedure is proposed for some lifetime distributions when the available data are subject to Type-I censoring. The proposed method extends the test procedure of Pakyari and Balakrishnan to other lifetime distributions. The extension to Weibull and log-normal models is studied in details. The new test recovers the nominal level of significance and exhibits more power in comparison to the existing tests for several alternative distributions by means of Monte Carlo simulations. Finally, a real dataset is considered for illustrative purposes.  相似文献   

9.
This R package implements three types of goodness-of-fit tests for some widely used probability distributions where there are unknown parameters, namely tests based on data transformations, on the ratio of two estimators of a dispersion parameter, and correlation tests. Most of the considered tests have been proved to be powerful against a wide range of alternatives and some new ones are proposed here. The package's functionality is illustrated with several examples by using some data sets from the areas of environmental studies, biology and finance, among others.  相似文献   

10.
The Rayleigh distribution has been used to model right skewed data. Rayleigh [On the resultant of a large number of vibrations of the some pitch and of arbitrary phase. Philos Mag. 1880;10:73–78] derived it from the amplitude of sound resulting from many important sources. In this paper, a new goodness-of-fit test for the Rayleigh distribution is proposed. This test is based on the empirical likelihood ratio methodology proposed by Vexler and Gurevich [Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy. Comput Stat Data Anal. 2010;54:531–545]. Consistency of the proposed test is derived. It is shown that the distribution of the proposed test does not depend on scale parameter. Critical values of the test statistic are computed, through a simulation study. A Monte Carlo study for the power of the proposed test is carried out under various alternatives. The performance of the test is compared with some well-known competing tests. Finally, an illustrative example is presented and analysed.  相似文献   

11.
The gamma distribution is often used to model data with right skewness. Smooth tests of goodness of fit are proposed for this distribution. Their powers are compared with powers of the Anderson–Darling test and tests based on the empirical Laplace transform, the empirical moment generating function and the independence of the mean and coefficient of variation that characterizes the gamma distribution.  相似文献   

12.
13.
A multivariate change point control chart based on data depth (CPDP) is considered for detecting shifts in either the mean vector, the covariance matrix, or both of the processes for Phase I. The proposed chart is preferable from a robustness point of view, has attractive detection performance, and can be especially useful in Phase I analysis setting, where there is limited information about the underlying process. Comparison results and an illustrative example show that our CPDP chart has great potential for Phase I analysis of multivariate individual observations. The application of CPDP chart is illustrated in a real data example.  相似文献   

14.
A probability property that connects the skew normal (SN) distribution with the normal distribution is used for proposing a goodness-of-fit test for the composite null hypothesis that a random sample follows an SN distribution with unknown parameters. The random sample is transformed to approximately normal random variables, and then the Shapiro–Wilk test is used for testing normality. The implementation of this test does not require neither parametric bootstrap nor the use of tables for different values of the slant parameter. An additional test for the same problem, based on a property that relates the gamma and SN distributions, is also introduced. The results of a power study conducted by the Monte Carlo simulation show some good properties of the proposed tests in comparison to existing tests for the same problem.  相似文献   

15.
Over the years many researchers have dealt with testing the hypotheses of symmetry in univariate and multivariate distributions in the parametric and nonparametric setup. In a multivariate setup, there are several formulations of symmetry, for example, symmetry about an axis, joint symmetry, marginal symmetry, radial symmetry, symmetry about a known point, spherical symmetry, and elliptical symmetry among others. In this paper, for the bivariate case, we formulate a concept of symmetry about a straight line passing through the origin in a plane and accordingly develop a simple nonparametric test for testing the hypothesis of symmetry about a straight line. The proposed test is based on a measure of deviance between observed counts of bivariate samples in suitably defined pairs of sets. The exact null distribution and non-null distribution, for specified classes of alternatives, of the test statistics are obtained. The null distribution is tabulated for sample size from n=5 up to n=30. The null mean, null variance and the asymptotic null distributions of the proposed test statistics are also obtained. The empirical power of the proposed test is evaluated by simulating samples from the suitable class of bivariate distributions. The empirical findings suggest that the test performs reasonably well against various classes of asymmetric bivariate distributions. Further, it is advocated that the basic idea developed in this work can be easily adopted to test the hypotheses of exchangeability of bivariate random variables and also bivariate symmetry about a given axis which have been considered by several authors in the past.  相似文献   

16.
We reveal that the minimum Anderson–Darling (MAD) estimator is a variant of the maximum likelihood method. Furthermore, it is shown that the MAD estimator offers excellent opportunities for parameter estimation if there is no explicit formulation for the distribution model. The computation time for the MAD estimator with approximated cumulative distribution function is much shorter than that of the classical maximum likelihood method with approximated probability density function. Additionally, we research the performance of the MAD estimator for the generalized Pareto distribution and demonstrate a further advantage of the MAD estimator with an issue of seismic hazard analysis.  相似文献   

17.
In this paper, we revisit the problem of testing of the hypothesis of circular symmetry of a bivariate distribution. We propose some nonparametric tests based on sector counts. These include tests based on chi-square goodness-of-fit test, the classical likelihood ratio, mean deviation, and the range. The proposed tests are easy to implement and the exact null distributions for small sample sizes of the test statistics are obtained. Two examples with small and large data sets are given to illustrate the application of the tests proposed. For small and moderate sample sizes, the performances of the proposed tests are evaluated using empirical powers (empirical sizes are also reported). Also, we evaluate the performance of these count-based tests with adaptations of several well-known tests such as the Kolmogorov–Smirnov-type tests, tests based on kernel density estimator, and the Wilcoxon-type tests. It is observed that among the count-based tests the likelihood ratio test performs better.  相似文献   

18.
ABSTRACT

This article considers the monitoring for variance change in nonparametric regression models. First, the local linear estimator of the regression function is given. A moving square cumulative sum procedure is proposed based on residuals of the estimator. And the asymptotic results of the statistic under the null hypothesis and the alternative hypothesis are obtained. Simulations and Application support our procedure.  相似文献   

19.
Tests based on the Anderson–Darling statistic, a third moment statistic and the classical Pearson–Fisher X 2 statistic, along with its third-order component, are considered. A small critical value and power study are given. Some examples illustrate important applications.  相似文献   

20.
In some industrial applications, the quality of a process or product is characterized by a relationship between the response variable and one or more independent variables which is called as profile. There are many approaches for monitoring different types of profiles in the literature. Most researchers assume that the response variable follows a normal distribution. However, this assumption may be violated in many cases. The most likely situation is when the response variable follows a distribution from generalized linear models (GLMs). For example, when the response variable is the number of defects in a certain area of a product, the observations follow Poisson distribution and ignoring this fact will cause misleading results. In this paper, three methods including a T2-based method, likelihood ratio test (LRT) method and F method are developed and modified in order to be applied in monitoring GLM regression profiles in Phase I. The performance of the proposed methods is analysed and compared for the special case that the response variable follows Poisson distribution. A simulation study is done regarding the probability of the signal criterion. Results show that the LRT method performs better than two other methods and the F method performs better than the T2-based method in detecting either small or large step shifts as well as drifts. Moreover, the F method performs better than the other two methods, and the LRT method performs poor in comparison with the F and T2-based methods in detecting outliers. A real case, in which the size and number of agglomerates ejected from a volcano in successive days form the GLM profile, is illustrated and the proposed methods are applied to determine whether the number of agglomerates of each size is under statistical control or not. Results showed that the proposed methods could handle the mentioned situation and distinguish the out-of-control conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号