首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

We consider the estimation of the conditional cumulative distribution function of a scalar response variable Y given a Hilbertian random variable X when the observations are linked via a single-index structure. We establish the pointwise and the uniform almost complete convergence (with the rate) of the kernel estimate of this model. As an application, we show how our result can be applied in the prediction problem via the conditional median estimate. Also, the choice of the functional index via the cross-validation procedure is also discussed but not attacked.  相似文献   

2.
ABSTRACT

In this article, we consider a simple step-stress life test in the presence of exponentially distributed competing risks. It is assumed that the stress is changed when a pre-specified number of failures takes place. The data is assumed to be Type-II censored. We obtain the maximum likelihood estimators of the model parameters and the exact conditional distributions of the maximum likelihood estimators. Based on the conditional distribution, approximate confidence intervals (CIs) of unknown parameters have been constructed. Percentile bootstrap CIs of model parameters are also provided. Optimal test plan is addressed. We perform an extensive simulation study to observe the behaviour of the proposed method. The performances are quite satisfactory. Finally we analyse two data sets for illustrative purposes.  相似文献   

3.
We propose an estimation procedure for time-series regression models under the Bayesian inference framework. With the exact method of Wise [Wise, J. (1955). The autocorrelation function and spectral density function. Biometrika, 42, 151–159], an exact likelihood function can be obtained instead of the likelihood conditional on initial observations. The constraints on the parameter space arising from the stationarity conditions are handled by a reparametrization, which was not taken into consideration by Chib [Chib, S. (1993). Bayes regression with autoregressive errors: A Gibbs sampling approach. J. Econometrics, 58, 275–294] or Chib and Greenberg [Chib, S. and Greenberg, E. (1994). Bayes inference in regression model with ARMA(p, q) errors. J. Econometrics, 64, 183–206]. Simulation studies show that our method leads to better inferential results than their results.  相似文献   

4.
The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on independent and identically distributed samples. Our contribution is a two-step procedure for estimating extreme conditional quantiles. In a first step nonextreme conditional quantiles are estimated nonparametrically using a local version of [Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.] regression quantile methodology. Next, these nonparametric quantile estimates are used as analogues of univariate order statistics in procedures for extreme quantile estimation. The performance of the method is evaluated for both heavy tailed distributions and distributions with a finite right endpoint using a small sample simulation study. A bootstrap procedure is developed to guide in the selection of an optimal local bandwidth. Finally the procedure is illustrated in two case studies.  相似文献   

5.
We consider the one-way ANOVA problem of testing the equality of several normal means when the variances are not assumed to be equal. This is a generalization of the Behrens-Fisher problem, but even in this special case there is no exact test and the actual size of any test depends on the values of the nuisance parameters. Therefore, controlling the actual size of the test is of main concern. In this article, we first consider a test using the concept of generalized p-value. Extensive simulation studies show that the actual size of this test does not exceed the nominal level, for practically all values of the nuisance parameters, but the test is not too conservative either, in the sense that the actual size of the test can be very close to the nominal level for some values of the nuisance parameters. We then use this test to propose a simple F-test, which has similar properties but avoids the computations associated with generalized p-values. Because of its simplicity, both conceptually as well as computationally, this F-test may be more useful in practice, since one-way ANOVA is widely used by practitioners who may not be familiar with the generalized p-value and its computational aspects.  相似文献   

6.
Matched case–control designs are commonly used in epidemiological studies for estimating the effect of exposure variables on the risk of a disease by controlling the effect of confounding variables. Due to retrospective nature of the study, information on a covariate could be missing for some subjects. A straightforward application of the conditional logistic likelihood for analyzing matched case–control data with the partially missing covariate may yield inefficient estimators of the parameters. A robust method has been proposed to handle this problem using an estimated conditional score approach when the missingness mechanism does not depend on the disease status. Within the conditional logistic likelihood framework, an empirical procedure is used to estimate the odds of the disease for the subjects with missing covariate values. The asymptotic distribution and the asymptotic variance of the estimator when the matching variables and the completely observed covariates are categorical. The finite sample performance of the proposed estimator is assessed through a simulation study. Finally, the proposed method has been applied to analyze two matched case–control studies. The Canadian Journal of Statistics 38: 680–697; 2010 © 2010 Statistical Society of Canada  相似文献   

7.
ABSTRACT

In this article we present a new solution to test for effects in unreplicated two-level factorial designs. The proposed test statistic, in case the error components are normally distributed, follows an F random variable, though our attention is on its nonparametric permutation version. The proposed procedure does not require any transformation of data such as residualization and it is exact for each effect and distribution-free. Our main aim is to discuss a permutation solution conditional to the original vector of responses. We give two versions of the same nonparametric testing procedure in order to control both the individual error rate and the experiment-wise error rate. A power comparison with Loughin and Noble's test is provided in the case of a unreplicated 24 full factorial design.  相似文献   

8.
We develop a finite-sample procedure to test the mean-variance efficiency and spanning hypotheses, without imposing any parametric assumptions on the distribution of model disturbances. In so doing, we provide an exact distribution-free method to test uniform linear restrictions in multivariate linear regression models. The framework allows for unknown forms of nonnormalities as well as time-varying conditional variances and covariances among the model disturbances. We derive exact bounds on the null distribution of joint F statistics to deal with the presence of nuisance parameters, and we show how to implement the resulting generalized nonparametric bounds tests with Monte Carlo resampling techniques. In sharp contrast to the usual tests that are not even computable when the number of test assets is too large, the power of the proposed test procedure potentially increases along both the time and cross-sectional dimensions.  相似文献   

9.
Summary We idenify the invertible coherent functional relation between an array of asserted conditional probabilities and the probability distribution for the sum of events that are regarded exchangeably, in the regular case thatP(N N+1 |S N =a) ∈ (0, 1) for everya=0, 1, ...,N. The result is used to construct a useful algebraic and geometrical representation of all coherent inferences in the regular case, including those that are nonlinear in the sum of the conditioning events. The special case in which conditional probabilities mimic observed frequencies within (0, 1) receives an exact solution, which allows an easy interpretation of its surprising consequences. Finally, we introduce a new direction in research on prior opinion assessment that this approach, inverse to the usual one, suggests.  相似文献   

10.
Pearson’s chi-square (Pe), likelihood ratio (LR), and Fisher (Fi)–Freeman–Halton test statistics are commonly used to test the association of an unordered r×c contingency table. Asymptotically, these test statistics follow a chi-square distribution. For small sample cases, the asymptotic chi-square approximations are unreliable. Therefore, the exact p-value is frequently computed conditional on the row- and column-sums. One drawback of the exact p-value is that it is conservative. Different adjustments have been suggested, such as Lancaster’s mid-p version and randomized tests. In this paper, we have considered 3×2, 2×3, and 3×3 tables and compared the exact power and significance level of these test’s standard, mid-p, and randomized versions. The mid-p and randomized test versions have approximately the same power and higher power than that of the standard test versions. The mid-p type-I error probability seldom exceeds the nominal level. For a given set of parameters, the power of Pe, LR, and Fi differs approximately the same way for standard, mid-p, and randomized test versions. Although there is no general ranking of these tests, in some situations, especially when averaged over the parameter space, Pe and Fi have the same power and slightly higher power than LR. When the sample sizes (i.e., the row sums) are equal, the differences are small, otherwise the observed differences can be 10% or more. In some cases, perhaps characterized by poorly balanced designs, LR has the highest power.  相似文献   

11.
Applied statisticians and pharmaceutical researchers are frequently involved in the design and analysis of clinical trials where at least one of the outcomes is binary. Treatments are judged by the probability of a positive binary response. A typical example is the noninferiority trial, where it is tested whether a new experimental treatment is practically not inferior to an active comparator with a prespecified margin δ. Except for the special case of δ = 0, no exact conditional test is available although approximate conditional methods (also called second‐order methods) can be applied. However, in some situations, the approximation can be poor and the logical argument for approximate conditioning is not compelling. The alternative is to consider an unconditional approach. Standard methods like the pooled z‐test are already unconditional although approximate. In this article, we review and illustrate unconditional methods with a heavy emphasis on modern methods that can deliver exact, or near exact, results. For noninferiority trials based on either rate difference or rate ratio, our recommendation is to use the so‐called E‐procedure, based on either the score or likelihood ratio statistic. This test is effectively exact, computationally efficient, and respects monotonicity constraints in practice. We support our assertions with a numerical study, and we illustrate the concepts developed in theory with a clinical example in pulmonary oncology; R code to conduct all these analyses is available from the authors.  相似文献   

12.
Extended Weibull type distribution and finite mixture of distributions   总被引:1,自引:0,他引:1  
An extended form of Weibull distribution is suggested which has two shape parameters (m and δ). Introduction of another shape parameter δ helps to express the extended Weibull distribution not only as an exact form of a mixture of distributions under certain conditions, but also provides extra flexibility to the density function over positive range. The shape of density function of the extended Weibull type distribution for various values of the parameters is shown which may be of some interest to Bayesians. Certain statistical properties such as hazard rate function, mean residual function, rth moment are defined explicitly. The proposed extended Weibull distribution is used to derive an exact form of two, three and k-component mixture of distributions. With the help of a real data set, the usefulness of mixture Weibull type distribution is illustrated by using Markov Chain Monte Carlo (MCMC), Gibbs sampling approach.  相似文献   

13.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

14.

Let Y be a response and, given covariate X,Y has a conditional density f(y | x, θ), where θ is a unknown p-dimensional vector of parameters and the marginal distribution of X is unknown. When responses are missing at random, with auxiliary information and imputation, we define an adjusted empirical log-likelihood ratio for the mean of Y and obtain its asymptotic distribution. A simulation study is conducted to compare the adjusted empirical log-likelihood and the normal approximation method in terms of coverage accuracies.  相似文献   

15.
A randomized procedure is described for constructing an exact test from a test statistic F for which the null distribution is unknown. The procedure is restricted to cases where F is a function of a random element U that has a known distribution under the null hypothesis. The power of the exact randomized test is shown to be greater in some cases than the power of the exact nonrandomized test that could be constructed if the null distribution of Fwere known.  相似文献   

16.
Using a forward selection procedure for selecting the best subset of regression variables involves the calculation of critical values (cutoffs) for an F-ratio at each step of a multistep search process. On dropping the restrictive (unrealistic) assumptions used in previous works, the null distribution of the F-ratio depends on unknown regression parameters for the variables already included in the subset. For the case of known σ, by conditioning the F-ratio on the set of regressors included so far and also on the observed (estimated) values of their regression coefficients, we obtain a forward selection procedure whose stepwise type I error does not depend on the unknown (nuisance) parameters. A numerical example with an orthogonal design matrix illustrates the difference between conditional cutoffs, cutoffs for the centralF-distribution, and cutoffs suggested by Pope and Webster.  相似文献   

17.

Recently, exact confidence bounds and exact likelihood inference have been developed based on hybrid censored samples by Chen and Bhattacharyya [Chen, S. and Bhattacharyya, G.K. (1998). Exact confidence bounds for an exponential parameter under hybrid censoring. Communications in StatisticsTheory and Methods, 17, 1857–1870.], Childs et al. [Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55, 319–330.], and Chandrasekar et al. [Chandrasekar, B., Childs, A. and Balakrishnan, N. (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring. Naval Research Logistics, 51, 994–1004.] for the case of the exponential distribution. In this article, we propose an unified hybrid censoring scheme (HCS) which includes many cases considered earlier as special cases. We then derive the exact distribution of the maximum likelihood estimator as well as exact confidence intervals for the mean of the exponential distribution under this general unified HCS. Finally, we present some examples to illustrate all the methods of inference developed here.  相似文献   

18.
Approximate confidence intervals are given for the lognormal regression problem. The error in the nominal level can be reduced to O(n ?2), where n is the sample size. An alternative procedure is given which avoids the non-robust assumption of lognormality. This amounts to finding a confidence interval based on M-estimates for a general smooth function of both ? and F, where ? are the parameters of the general (possibly nonlinear) regression problem and F is the unknown distribution function of the residuals. The derived intervals are compared using theory, simulation and real data sets.  相似文献   

19.
ABSTRACT

We derive the exact distribution of the maximum likelihood estimator of the mean reversion parameter (κ) in the Ornstein–Uhlenbeck process using numerical integration through analytical evaluation of a joint characteristic function. Different scenarios are considered: known or unknown drift term, fixed or random start-up value, and zero or positive κ. Monte Carlo results demonstrate the remarkably reliable performance of our exact approach across all the scenarios. In comparison, misleading results may arise under the asymptotic distributions, including the advocated infill asymptotic distribution, which performs poorly in the tails when there is no intercept in the regression and the starting value of the process is nonzero.  相似文献   

20.
Optimal design theory deals with the assessment of the optimal joint distribution of all independent variables prior to data collection. In many practical situations, however, covariates are involved for which the distribution is not previously determined. The optimal design problem may then be reformulated in terms of finding the optimal marginal distribution for a specific set of variables. In general, the optimal solution may depend on the unknown (conditional) distribution of the covariates. This article discusses the D A -maximin procedure to account for the uncertain distribution of the covariates. Sufficient conditions will be given under which the uniform design of a subset of independent discrete variables is D A -maximin. The sufficient conditions are formulated for Generalized Linear Mixed Models with an arbitrary number of quantitative and qualitative independent variables and random effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号