首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hahn (1977) suggested a procedure for constructing prediction intervals for the difference between the means of two future samples from normal populations having equal variance, based on past samples selected from both populations. In this paper, we extend Hahn's work by constructing simultaneous prediction intervals for all pairwise differences among the means of k ≥ 2 future samples from normal populations with equal variances, using past samples taken from each of the k populations. For K = 2, this generalization reduces to Hahn's special case. These prediction intervals may be used when one has sampled the performance of several products and wishes to simultaneously as- sess the differences in future sample mean performance of these products with a predetermined overall coverage probability. The use of the new procedure is demonstrated with a numerical example.  相似文献   

2.
It is well known (see, e.g., Scheffé (1959)) that if confidence intervals are desired for several treatment comparisons of interest, especially after a preliminary test of significance, then the appropriate technique is to consider simultaneous confidence intervals with a certain joint confidence coefficient. Goodman (1964) derived such simultaneous confidence intervals for contrasts among several multinomial populations, each with the same number, say J, of classes. The special case involving simultaneous confidence intervals for contrasts among several binomial populations on the basis of independent samples follows simply by taking J=2. This paper now deals with the problem of construction of simultaneous confidence intervals among probabilities of ‘success’ on the basis of matched samples.  相似文献   

3.
We consider the problem of making inferences on the common mean of several heterogeneous log-normal populations. We apply the parametric bootstrap (PB) approach and the method of variance estimate recovery (MOVER) to construct confidence intervals for the log-normal common mean. We then compare the performances of the proposed confidence intervals with the existing confidence intervals via an extensive simulation study. Simulation results show that our proposed MOVER and PB confidence intervals can be recommended generally for different sample sizes and number of populations.  相似文献   

4.
In this paper, a new design-oriented two-stage two-sided simultaneous confidence intervals, for comparing several exponential populations with control population in terms of location parameters under heteroscedasticity, are proposed. If there is a prior information that the location parameter of k exponential populations are not less than the location parameter of control population, one-sided simultaneous confidence intervals provide more inferential sensitivity than two-sided simultaneous confidence intervals. But the two-sided simultaneous confidence intervals have advantages over the one-sided simultaneous confidence intervals as they provide both lower and upper bounds for the parameters of interest. The proposed design-oriented two-stage two-sided simultaneous confidence intervals provide the benefits of both the two-stage one-sided and two-sided simultaneous confidence intervals. When the additional sample at the second stage may not be available due to the experimental budget shortage or other factors in an experiment, one-stage two-sided confidence intervals are proposed, which combine the advantages of one-stage one-sided and two-sided simultaneous confidence intervals. The critical constants are obtained using the techniques given in Lam [9,10]. These critical constant are compared with the critical constants obtained by Bonferroni inequality techniques and found that critical constant obtained by Lam [9,10] are less conservative than critical constants computed from the Bonferroni inequality technique. Implementation of the proposed simultaneous confidence intervals is demonstrated by a numerical example.  相似文献   

5.
We respond to criticism leveled at bootstrap confidence intervals for the correlation coefficient by recent authors by arguing that in the correlation coefficient case, non–standard methods should be employed. We propose two such methods. The first is a bootstrap coverage coorection algorithm using iterated bootstrap techniques (Hall, 1986; Beran, 1987a; Hall and Martin, 1988) applied to ordinary percentile–method intervals (Efron, 1979), giving intervals with high coverage accuracy and stable lengths and endpoints. The simulation study carried out for this method gives results for sample sizes 8, 10, and 12 in three parent populations. The second technique involves the construction of percentile–t bootstrap confidence intervals for a transformed correlation coefficient, followed by an inversion of the transformation, to obtain “transformed percentile–t” intervals for the correlation coefficient. In particular, Fisher's z–transformation is used, and nonparametric delta method and jackknife variance estimates are used to Studentize the transformed correlation coefficient, with the jackknife–Studentized transformed percentile–t interval yielding the better coverage accuracy, in general. Percentile–t intervals constructed without first using the transformation perform very poorly, having large expected lengths and erratically fluctuating endpoints. The simulation study illustrating this technique gives results for sample sizes 10, 15 and 20 in four parent populations. Our techniques provide confidence intervals for the correlation coefficient which have good coverage accuracy (unlike ordinary percentile intervals), and stable lengths and endpoints (unlike ordinary percentile–t intervals).  相似文献   

6.
If a population contains many zero values and the sample size is not very large, the traditional normal approximation‐based confidence intervals for the population mean may have poor coverage probabilities. This problem is substantially reduced by constructing parametric likelihood ratio intervals when an appropriate mixture model can be found. In the context of survey sampling, however, there is a general preference for making minimal assumptions about the population under study. The authors have therefore investigated the coverage properties of nonparametric empirical likelihood confidence intervals for the population mean. They show that under a variety of hypothetical populations, these intervals often outperformed parametric likelihood intervals by having more balanced coverage rates and larger lower bounds. The authors illustrate their methodology using data from the Canadian Labour Force Survey for the year 2000.  相似文献   

7.
Abstract.  The paper develops empirical Bayes (EB) confidence intervals for population means with distributions belonging to the natural exponential family-quadratic variance function (NEF-QVF) family when the sample size for a particular population is moderate or large. The basis for such development is to find an interval centred around the posterior mean which meets the target coverage probability asymptotically, and then show that the difference between the coverage probabilities of the Bayes and EB intervals is negligible up to a certain order. The approach taken is Edgeworth expansion so that the sample sizes from the different populations need not be significantly large. The proposed intervals meet the target coverage probabilities asymptotically, and are easy to construct. We illustrate use of these intervals in the context of small area estimation both through real and simulated data. The proposed intervals are different from the bootstrap intervals. The latter can be applied quite generally, but the order of accuracy of these intervals in meeting the desired coverage probability is unknown.  相似文献   

8.
The authors describe a new method for constructing confidence intervals. Their idea consists in specifying the cutoff points in terms of a function of the target parameter rather than as constants. When it is suitably chosen, this so‐called tail function yields shorter confidence intervals in the presence of prior information. It can also be used to improve the coverage properties of approximate confidence intervals. The authors illustrate their technique by application to interval estimation of the mean of Bernoulli and normal populations. They further suggest guidelines for choosing the optimal tail function and discuss the relationship with Bayesian inference.  相似文献   

9.
ABSTRACT

In non-normal populations, it is more convenient to use the coefficient of quartile variation rather than the coefficient of variation. This study compares the percentile and t-bootstrap confidence intervals with Bonett's confidence interval for the quartile variation. We show that empirical coverage of the bootstrap confidence intervals is closer to the nominal coverage (0.95) for small sample sizes (n = 5, 6, 7, 8, 9, 10 and 15) for most distributions studied. Bootstrap confidence intervals also have smaller average width. Thus, we propose using bootstrap confidence intervals for the coefficient of quartile variation when the sample size is small.  相似文献   

10.
k normal populations having common variance are used to construct two-sided and one-sided simultaneous prediction intervals for the differences between the future means of independent random sample from each of these populations compared to a standard. These prediction intervals are particularly useful if one has sampled the performance of several products and wishes to simultaneously predict the differences between future sample mean performance of these products and a standard with a predetermined joint probability. Methods on sample size determination are also given. The procedures are illustrated with a numerical example. Received: February 25, 2000; revised version: February 6, 2001  相似文献   

11.
The authors develop empirical likelihood (EL) based methods of inference for a common mean using data from several independent but nonhomogeneous populations. For point estimation, they propose a maximum empirical likelihood (MEL) estimator and show that it is n‐consistent and asymptotically optimal. For confidence intervals, they consider two EL based methods and show that both intervals have approximately correct coverage probabilities under large samples. Finite‐sample performances of the MEL estimator and the EL based confidence intervals are evaluated through a simulation study. The results indicate that overall the MEL estimator and the weighted EL confidence interval are superior alternatives to the existing methods.  相似文献   

12.
Consider a set of order statistics that arise from sorting samples from two different populations, each with their own, possibly different distribution functions. The probability that these order statistics fall in disjoint, ordered intervals and that of the smallest statistics, a certain number come from the first populations is given in terms of the two distribution functions. The result is applied to computing the joint probability of the number of rejections and the number of false rejections for the Benjamini-Hochberg false discovery rate procedure.  相似文献   

13.
Abstract: The authors derive empirical likelihood confidence regions for the comparison distribution of two populations whose distributions are to be tested for equality using random samples. Another application they consider is to ROC curves, which are used to compare measurements of a diagnostic test from two populations. The authors investigate the smoothed empirical likelihood method for estimation in this context, and empirical likelihood based confidence intervals are obtained by means of the Wilks theorem. A bootstrap approach allows for the construction of confidence bands. The method is illustrated with data analysis and a simulation study.  相似文献   

14.
A procedure is given for obtaining a random width confidence interval for the largest reliability of k Weibull populations. The procedure does not identify the populations for which the reliability would be a maximum. The maximum likelihood estimators or the simplified linear estimators of the reliability based on type II censored data are used. The cases considered include unknown shape parameters being equal or unequal. Simultaneous confidence intervals for the k reliabilities are also obtained. Tables for the lower and upper limits in selected cases are constructed using Monte Carlo methods.  相似文献   

15.
The ordinary Wilcoxon signed rank test table provides confidence intervals for the median of one population. Adjusted Wilcoxon signed rank test tables which can provide confidence intervals for the median and the 10th percentile of one population are created in this paper. Base-(n + 1) number system and theorems about property of symmetry of the adjusted Wilcoxon signed rank test statistic are derived for programming. Theorem 1 states that the adjusted Wilcoxon signed rank test statistic are symmetric around n(n + 1)/4. Theorem 2 states that the adjusted Wilcoxon signed rank test statistic with the same number of negative ranks m are symmetric around m(n+1)/2. 87.5% and 85% confidence intervals of the median are given in the table for n = 12, 13,…, 29 to create approximated 95% confidence intervals of the ratio of medians for two independent populations. 95% and 92.5% confidence intervals of the 10th percentile are given in the table for n = 26, 27, 28, 29 to create approximated 95% confidence regions of the ratio of the 10th percentiles for two independent populations. Finally two large datasets from wood industry will be partitioned to verify the correctness of adjusted Wilcoxon signed rank test tables for small samples.  相似文献   

16.
The receiver operating characteristic (ROC) curve is one of the most commonly used methods to compare the diagnostic performance of two or more laboratory or diagnostic tests. In this paper, we propose semi-empirical likelihood based confidence intervals for ROC curves of two populations, where one population is parametric and the other one is non-parametric and both have missing data. After imputing missing values, we derive the semi-empirical likelihood ratio statistic and the corresponding likelihood equations. It is shown that the log-semi-empirical likelihood ratio statistic is asymptotically scaled chi-squared. The estimating equations are solved simultaneously to obtain the estimated lower and upper bounds of semi-empirical likelihood confidence intervals. We conduct extensive simulation studies to evaluate the finite sample performance of the proposed empirical likelihood confidence intervals with various sample sizes and different missing probabilities.  相似文献   

17.
Confidence statements about location (or scale) parameters associated with K populations, which may be used in making selection decisions about those populations, are investigated. When a subset of fixed size t is selected from the K populations a lower bound is obtained for the minimum selected parameter as a function of the maximum non-selected parameter. Tables are produced for the normal means case when the variance is common but unknown. It is pointed out that these tables may be used to find confidence intervals discussed by Hsu (1984  相似文献   

18.
In this paper, when a jointly Type-II censored sample arising from k independent exponential populations is available, the conditional MLEs of the k exponential mean parameters are derived. The moment generating functions and the exact densities of these MLEs are obtained using which exact confidence intervals are developed for the parameters. Moreover, approximate confidence intervals based on the asymptotic normality of the MLEs and credible confidence regions from a Bayesian viewpoint are also discussed. An empirical comparison of the exact, approximate, bootstrap, and Bayesian intervals is also made in terms of coverage probabilities. Finally, an example is presented in order to illustrate all the methods of inference developed here.  相似文献   

19.
In this paper we consider and propose some confidence intervals for estimating the mean or difference of means of skewed populations. We extend the median t interval to the two sample problem. Further, we suggest using the bootstrap to find the critical points for use in the calculation of median t intervals. A simulation study has been made to compare the performance of the intervals and a real life example has been considered to illustrate the application of the methods.  相似文献   

20.
The inversion formula for evaluation of the distribution of a linear combination of independent t and F random variables, respectively, is suggested. The method is applied to computing the exact confidence intervals for the common mean of several normal populations. This method is compared with the known approximate methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号