首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper derives the exact confidence intervals for the exponential step-stress accelerated life-testing model as well as the approximate confidence intervals for the k-step exponential step-stress accelerated life-testing model under progressive Type-II censoring. A Monte Carlo simulation study is carried out to examine the performance of these confidence intervals. Finally, an example is given to illustrate the proposed procedures.  相似文献   

2.
In this paper, we present a statistical inference procedure for the step-stress accelerated life testing (SSALT) model with Weibull failure time distribution and interval censoring via the formulation of generalized linear model (GLM). The likelihood function of an interval censored SSALT is in general too complicated to obtain analytical results. However, by transforming the failure time to an exponential distribution and using a binomial random variable for failure counts occurred in inspection intervals, a GLM formulation with a complementary log-log link function can be constructed. The estimations of the regression coefficients used for the Weibull scale parameter are obtained through the iterative weighted least square (IWLS) method, and the shape parameter is updated by a direct maximum likelihood (ML) estimation. The confidence intervals for these parameters are estimated through bootstrapping. The application of the proposed GLM approach is demonstrated by an industrial example.  相似文献   

3.
Recently, progressively hybrid censoring schemes have become quite popular in life testing and reliability studies. In this article, the point and interval maximum-likelihood estimations of Weibull distribution parameters and the acceleration factor are considered. The estimation process is performed under Type-I progressively hybrid censored data for a step-stress partially accelerated test model. The biases and mean square errors of the maximum-likelihood estimators are computed to assess their performances in the presence of censoring developed in this article through a Monte Carlo simulation study.  相似文献   

4.
This paper presents a step-stress accelerated life test for two stress variables to obtain optimal hold times under a Type-I hybrid censoring scheme. An exponentially distributed life and a cumulative exposure model are assumed. The maximum-likelihood estimates are given, from which the asymptotic variance and the Fisher information matrix are obtained. The optimal test plan is determined for each combination of stress levels by minimizing the asymptotic variance of reliability estimate at a typical operating condition. Finally, simulation results are discussed to illustrate the proposed criteria. Simulation results show that the proposed optimum plan is robust, and the initial estimates have a small effect on optimal values.  相似文献   

5.
The step-stress model is a special case of accelerated life testing that allows for testing of units under different levels of stress with changes occurring at various intermediate stages of the experiment. Interest then lies on inference for the mean lifetime at each stress level. All step-stress models discussed so far in the literature are based on a single experiment. For the situation when data have been collected from different experiments wherein all the test units had been exposed to the same levels of stress but with possibly different points of change of stress, we introduce a model that combines the different experiments and facilitates a meta-analysis for the estimation of the mean lifetimes. We then discuss in detail the likelihood inference for the case of simple step-stress experiments under exponentially distributed lifetimes with Type-II censoring.  相似文献   

6.
In this paper, we study a k-step-stress accelerated life test under Type-I censoring. The lifetime of the items follows the multivariate exponential distribution and a cumulative exposure model is considered. We derive the maximum likelihood estimators of the model parameters and establish the asymptotic properties of them. The problem of choosing the optimal time is addressed by using V-optimality as well as D-optimality criteria. Finally, some numerical studies are discussed to illustrate the proposed procedures.  相似文献   

7.
In this article, we focus on the general k-step step-stress accelerated life tests with Type-I censoring for two-parameter Weibull distributions based on the tampered failure rate (TFR) model. We get the optimum design for the tests under the criterion of the minimization of the asymptotic variance of the maximum likelihood estimate of the pth percentile of the lifetime under the normal operating conditions. Optimum test plans for the simple step-stress accelerated life tests under Type-I censoring are developed for the Weibull distribution and the exponential distribution in particular. Finally, an example is provided to illustrate the proposed design and a sensitivity analysis is conducted to investigate the robustness of the design.  相似文献   

8.
By combining the progressive hybrid censoring with the step-stress partially accelerated lifetime test, we propose an adaptive step-stress partially accelerated lifetime test, which allows random changing of the number of step-stress levels according to the pre-fixed censoring number and time points. Thus, the time expenditure and economic cost of the test will be reduced greatly. Based on the Lindley-distributed tampered failure rate (TFR) model with masked system lifetime data, the BFGS method is introduced in the expectation maximization (EM) algorithm to obtain the maximum likelihood estimation (MLE), which overcomes the difficulties of the vague maximization procedure in the M-step. Asymptotic confidence intervals of components' distribution parameters are also investigated according to the missing information principle. As comparison, the Bayesian estimation and the highest probability density (HPD) credible intervals are obtained by using adaptive rejection sampling. Furthermore, the reliability of the system and components are estimated at a specified time under usual and severe operating conditions. Finally, a numerical simulation example is presented to illustrate the performance of our proposed method.  相似文献   

9.
Battacharyya and Soejoeti (1989) proposed the tampered failure rate model for step-stress accelerated life testing. In this note, their model is generalized from the simple (2-step) step-stress setting to the multiple (k-step, k > 2) setting. For the parametric setting where the life distribution under constant stress is Weibull, maximum likelihood estimation is investigated and the situation where the different stress levels are equispaced is looked at.  相似文献   

10.
Recently generalized exponential distribution has been discussed by many authors. In this article, we study the optimal constant-stress accelerated life tests with complete sample for the generalized exponential distribution. The problem of choosing the optimal proportions of test units allocated to each stress level is addressed by using V-optimality as well as D-optimality criteria. Some interesting conclusions are obtained. Finally, real data example and numerical examples have been analyzed to illustrate the proposed procedures.  相似文献   

11.
This paper examines modeling and inference questions for experiments in which different subsets of a set of k possibly dependent components are tested in r different environments. In each environment, the failure times of the set of components on test is assumed to be governed by a particular type of multivariate exponential (MVE) distribution. For any given component tested in several environments, it is assumed that its marginal failure rate varies from one environment to another via a change of scale between the environments, resulting in a joint MVE model which links in a natural way the applicable MVE distributions describing component behavior in each fixed environment. This study thus extends the work of Proschan and Sullo (1976) to multiple environments and the work of Kvam and Samaniego (1993) to dependent data. The problem of estimating model parameters via the method of maximum likelihood is examined in detail. First, necessary and sufficient conditions for the identifiability of model parameters are established. We then treat the derivation of the MLE via a numerically-augmented application of the EM algorithm. The feasibility of the estimation method is demonstrated in an example in which the likelihood ratio test of the hypothesis of equal component failure rates within any given environment is carried out.  相似文献   

12.
In many survival analysis studies, failure can come from one of several competing risks. Additionally, where survival times are lengthy, researchers can increase stress levels to cause units to fail faster. One type of accelerated testing is a step-stress test where the increase is presented in quantum jumps at predetermined time points. If the impact of the increase is not immediately attained, an interim lag period is modeled. In this article, we propose a two-competing risk step-stress model with a lag period where each independent risk follows a Weibull lifetime distribution, the interim lag period is linear, and the attainment point is assumed known. We obtain the maximum likelihood estimators and the observed information matrix; we construct confidence intervals and provide estimates of coverage probabilities using large sample theory, percentile bootstrap, and bias-corrected accelerated (BCa) bootstrap methods.  相似文献   

13.
The purpose of this paper is to address the optimal design of the step-stress accelerated degradation test (SSADT) issue when the degradation process of a product follows the inverse Gaussian (IG) process. For this design problem, an important task is to construct a link model to connect the degradation magnitudes at different stress levels. In this paper, a proportional degradation rate model is proposed to link the degradation paths of the SSADT with stress levels, in which the average degradation rate is proportional to an exponential function of the stress level. Two optimization problems about the asymptotic variances of the lifetime characteristics' estimators are investigated. The optimal settings including sample size, measurement frequency and the number of measurements for each stress level are determined by minimizing the two objective functions within a given budget constraint. As an example, the sliding metal wear data are used to illustrate the proposed model.  相似文献   

14.
At the research and development stage, decision-makers may wish to classify several competing designs with respect to a control (or standard) one. The classification problem may become very difficult when the products are highly reliable, since only a few (or even no) failures may be observed under normal use condition. The accelerated life test model resolves this difficulty by shortening the time of life testing and quickly provides life data of products. For highly-reliable products with a Weibull log-linear model, we propose a classification rule based on a locally optimal criterion. A suitable sampling plan based on this rule is also developed. The performance of this rule is compared with a pairwise comparison classification rule. It is shown that the sample sizes needed for the new rule are considerably lower than those needed for the pairwise comparison rule.  相似文献   

15.
With the help of the result that exponential-type families are determined by their mean value functions it is shown that stochastic independence of the random variables SN and N-SN characterizes the Poisson and Bernoulli distributions simultaneously.  相似文献   

16.
Degradation testing (DT) is a useful approach to assessing the reliability of highly reliable products which are not likely to fail under the traditional life tests or accelerated life tests. There have been a great number of excellent studies investigating the estimation of the failure time distribution and the optimal design (e.g., the optimal setting of the inspection frequency, the number of measurement, and the termination time) for DTs. However, the lifetime distributions considered in the studies mentioned above are all those without failure-free life. Here, failure-free life is characterized by a threshold parameter below which no failure is possible. The main purpose of this article is to deal with the optimal design of a DT with a two-parameter exponential lifetime distribution. More specifically, with respect to a DT where a linearized degradation model is used to model the degradation process and the lifetime is assumed to follow a two-parameter exponential distribution, under the constraint that the total experimental cost does not exceed a predetermined budget, the optimal combination of the inspection frequency, the sample size, and the termination time are determined by minimizing the mean squared error of the estimated 100p-th percentile of the lifetime distribution of the product. An example is provided to illustrate the proposed method and the corresponding sensitivity analysis is also discussed.  相似文献   

17.
In this paper we consider the more realistic aspect of accelerated life testing wherein the stress on an unfailed item is allowed to increase at a preassigned test time. Such tests are known as step-stress tests. Our approach is nonparametric in that we do not make any assumptions about the underlying distribution of life lengths. We introduce a model for step-stress testing which is based on the ideas of shock models and of wear processes. This model unifies and generalizes two previously proposed models for step-stress testing. We propose an estimator for the life distribution under use conditions stress and show that this estimator is strongly consistent.  相似文献   

18.
In this paper, we have considered the problem of finding the distribution of a linear combination of the minimum and the maximum for a general bivariate distribution. The general results are used to obtain the required distribution in the case of bivariate normal, bivariate exponential of Arnold and Strauss, absolutely continuous bivariate exponential distribution of Block and Basu, bivariate exponential distribution of Raftery, Freund's bivariate exponential distribution and Gumbel's bivariate exponential distribution. The distributions of the minimum and maximum are obtained as special cases.  相似文献   

19.
In reliability analysis, it is common to consider several causes, either mechanical or electrical, those are competing to fail a unit. These causes are called “competing risks.” In this paper, we consider the simple step-stress model with competing risks for failure from Weibull distribution under progressive Type-II censoring. Based on the proportional hazard model, we obtain the maximum likelihood estimates (MLEs) of the unknown parameters. The confidence intervals are derived by using the asymptotic distributions of the MLEs and bootstrap method. For comparison, we obtain the Bayesian estimates and the highest posterior density (HPD) credible intervals based on different prior distributions. Finally, their performance is discussed through simulations.  相似文献   

20.
ABSTRACT

In this article, we consider a simple step-stress life test in the presence of exponentially distributed competing risks. It is assumed that the stress is changed when a pre-specified number of failures takes place. The data is assumed to be Type-II censored. We obtain the maximum likelihood estimators of the model parameters and the exact conditional distributions of the maximum likelihood estimators. Based on the conditional distribution, approximate confidence intervals (CIs) of unknown parameters have been constructed. Percentile bootstrap CIs of model parameters are also provided. Optimal test plan is addressed. We perform an extensive simulation study to observe the behaviour of the proposed method. The performances are quite satisfactory. Finally we analyse two data sets for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号