首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider estimation of a class of power-transformed threshold GARCH models. When the power of the transformation is known, the asymptotic properties of the quasi-maximum likelihood estimator (QMLE) are established under mild conditions. Two sequences of least-squares estimators are also considered in the pure ARCH case, and it is shown that they can be asymptotically more accurate than the QMLE for certain power transformations. In the case where the power of the transformation has to be estimated, the asymptotic properties of the QMLE are proven under the assumption that the noise has a density. The finite-sample properties of the proposed estimators are studied by simulation.  相似文献   

2.
In this paper, we consider robust M-estimation of time series models with both symmetric and asymmetric forms of heteroscedasticity related to the GARCH and GJR models. The class of estimators includes least absolute deviation (LAD), Huber’s, Cauchy and B-estimator as well as the well-known quasi maximum likelihood estimator (QMLE). Extensive simulations are used to check the relative performance of these estimators in both models and the weighted resampling methods are used to approximate the sampling distribution of M-estimators. Our study indicates that there are estimators that can perform better than QMLE and even outperform robust estimator such as LAD when the error distribution is heavy-tailed. These estimators are also applied to real data sets.  相似文献   

3.
This article proposes a novel Pearson-type quasi-maximum likelihood estimator (QMLE) of GARCH(p, q) models. Unlike the existing Gaussian QMLE, Laplacian QMLE, generalized non-Gaussian QMLE, or LAD estimator, our Pearsonian QMLE (PQMLE) captures not just the heavy-tailed but also the skewed innovations. Under strict stationarity and some weak moment conditions, the strong consistency and asymptotic normality of the PQMLE are obtained. With no further efforts, the PQMLE can be applied to other conditionally heteroscedastic models. A simulation study is carried out to assess the performance of the PQMLE. Two applications to four major stock indexes and two exchange rates further highlight the importance of our new method. Heavy-tailed and skewed innovations are often observed together in practice, and the PQMLE now gives us a systematic way to capture these two coexisting features.  相似文献   

4.
We consider the variance estimation of the weighted likelihood estimator (WLE) under two‐phase stratified sampling without replacement. Asymptotic variance of the WLE in many semiparametric models contains unknown functions or does not have a closed form. The standard method of the inverse probability weighted (IPW) sample variances of an estimated influence function is then not available in these models. To address this issue, we develop the variance estimation procedure for the WLE in a general semiparametric model. The phase I variance is estimated by taking a numerical derivative of the IPW log likelihood. The phase II variance is estimated based on the bootstrap for a stratified sample in a finite population. Despite a theoretical difficulty of dependent observations due to sampling without replacement, we establish the (bootstrap) consistency of our estimators. Finite sample properties of our method are illustrated in a simulation study.  相似文献   

5.
Abstract. Generalized autoregressive conditional heteroscedastic (GARCH) models have been widely used for analyzing financial time series with time‐varying volatilities. To overcome the defect of the Gaussian quasi‐maximum likelihood estimator (QMLE) when the innovations follow either heavy‐tailed or skewed distributions, Berkes & Horváth (Ann. Statist., 32, 633, 2004) and Lee & Lee (Scand. J. Statist. 36, 157, 2009) considered likelihood methods that use two‐sided exponential, Cauchy and normal mixture distributions. In this paper, we extend their methods for Box–Cox transformed threshold GARCH model by allowing distributions used in the construction of likelihood functions to include parameters and employing the estimated quasi‐likelihood estimators (QELE) to handle those parameters. We also demonstrate that the proposed QMLE and QELE are consistent and asymptotically normal under regularity conditions. Simulation results are provided for illustration.  相似文献   

6.
Using a spectral approach, the authors propose tests to detect multivariate ARCH effects in the residuals from a multivariate regression model. The tests are based on a comparison, via a quadratic norm, between the uniform density and a kernel‐based spectral density estimator of the squared residuals and cross products of residuals. The proposed tests are consistent under an arbitrary fixed alternative. The authors present a new application of the test due to Hosking (1980) which is seen to be a special case of their approach involving the truncated uniform kernel. However, they typically obtain more powerful procedures when using a different weighting. The authors consider especially the procedure of Robinson (1991) for choosing the smoothing parameter of the spectral density estimator. They also introduce a generalized version of the test for ARCH effects due to Ling & Li (1997). They investigate the finite‐sample performance of their tests and compare them to existing tests including those of Ling & Li (1997) and the residual‐based diagnostics of Tse (2002).Finally, they present a financial application.  相似文献   

7.
Estimating the parameters of multivariate mixed Poisson models is an important problem in image processing applications, especially for active imaging or astronomy. The classical maximum likelihood approach cannot be used for these models since the corresponding masses cannot be expressed in a simple closed form. This paper studies a maximum pairwise likelihood approach to estimate the parameters of multivariate mixed Poisson models when the mixing distribution is a multivariate Gamma distribution. The consistency and asymptotic normality of this estimator are derived. Simulations conducted on synthetic data illustrate these results and show that the proposed estimator outperforms classical estimators based on the method of moments. An application to change detection in low-flux images is also investigated.  相似文献   

8.
This paper presents a double AR model without intercept (DARWIN model) and provides us a new way to study the nonstationary heteroscedastic time series. It is shown that the DARWIN model is always nonstationary and heteroscedastic, and its sample properties depend on the Lyapunov exponent. An easy-to-implement estimator is proposed for the Lyapunov exponent, and it is unbiased, strongly consistent, and asymptotically normal. Based on this estimator, a powerful test is constructed for testing the ordinary oscillation of the model. Moreover, this paper proposes the quasi-maximum likelihood estimator (QMLE) for the DARWIN model, which has an explicit form. The strong consistency and asymptotic normality of the QMLE are established regardless of the sign of the Lyapunov exponent. Simulation studies are conducted to assess the performance of the estimation and testing, and an empirical example is given for illustrating the usefulness of the DARWIN model.  相似文献   

9.
Robinson (1982a) presented a general approach to serial correlation in limited dependent variable models and proved the strong consistency and asymptotic normality of the quasi-maximum likelihood estimator (QMLE) for the Tobit model with serial correlation, obtained under the assumption of independent errors. This paper proves the strong consistency and asymptotic normality of the QMLE based on independent errors for the truncated regression model with serial correlation and gives consistent estimators for the limiting covariance matrix of the QMLE.  相似文献   

10.
Robinson (1982a) presented a general approach to serial correlation in limited dependent variable models and proved the strong consistency and asymptotic normality of the quasi-maximum likelihood estimator (QMLE) for the Tobit model with serial correlation, obtained under the assumption of independent errors. This paper proves the strong consistency and asymptotic normality of the QMLE based on independent errors for the truncated regression model with serial correlation and gives consistent estimators for the limiting covariance matrix of the QMLE.  相似文献   

11.
I introduce the notion of continuous invertibility on a compact set for volatility models driven by a stochastic recurrence equation. I prove strong consistency of the quasi‐maximum likelihood estimator (QMLE) when the quasi‐likelihood criterion is maximized on a continuously invertible domain. This approach yields, for the first time, the asymptotic normality of the QMLE for the exponential general autoregressive conditional heteroskedastic (EGARCH(1,1)) model under explicit but non‐verifiable conditions. In practice, I propose to stabilize the QMLE by constraining the optimization procedure to an empirical continuously invertible domain. The new method, called stable QMLE, is asymptotically normal when the observations follow an invertible EGARCH(1,1) model.  相似文献   

12.
We consider portmanteau tests for testing the adequacy of structural vector autoregressive moving-average (VARMA) models under the assumption that the errors are uncorrelated but not necessarily independent. The structural forms are mainly used in econometrics to introduce instantaneous relationships between economic variables. We first study the joint distribution of the quasi-maximum likelihood estimator (QMLE) and the noise empirical autocovariances. We then derive the asymptotic distribution of residual empirical autocovariances and autocorrelations under weak assumptions on the noise. We deduce the asymptotic distribution of the Ljung-Box (or Box-Pierce) portmanteau statistics in this framework. It is shown that the asymptotic distribution of the portmanteau tests is that of a weighted sum of independent chi-squared random variables, which can be quite different from the usual chi-squared approximation used under independent and identically distributed (iid) assumptions on the noise. Hence we propose a method to adjust the critical values of the portmanteau tests. Monte Carlo experiments illustrate the finite sample performance of the modified portmanteau test.  相似文献   

13.
Wang  Jing 《Lifetime data analysis》2019,25(3):469-479

Multivariate frailty models have been used for clustered survival data to characterize the relationship between the hazard of correlated failures/events and exposure variables and covariates. However, these models can introduce serious biases of the estimation for failures from complex surveys that may depend on the sampling design (informative or noninformative). In order to consistently estimate parameters, this paper considers weighting the multivariate frailty model by the inverse of the probability of selection at each stage of sampling. This follows the principle of the pseudolikelihood approach. The estimation is carried out by maximizing the penalized partial and marginal pseudolikelihood functions. The performance of the proposed estimator is assessed through a Monte Carlo simulation study and the 4 waves of data from the 1998–1999 Early Childhood Longitudinal Study. Results show that the weighted estimator is consistent and approximately unbiased.

  相似文献   

14.
Consistency and asymptotic normality of quasi-maximum likelihood estimators (QMLEs) for the fractionally integrated asymmetric power ARCH (FIAPARCH) process are proved. The moment conditions are assumed only for standardized errors. We show the properties for a wide range of QMLEs including Gaussian QMLE.  相似文献   

15.
Abstract.  The generalized autoregressive conditional heteroscedastic (GARCH) model has been popular in the analysis of financial time series data with high volatility. Conventionally, the parameter estimation in GARCH models has been performed based on the Gaussian quasi-maximum likelihood. However, when the innovation terms have either heavy-tailed or skewed distributions, the quasi-maximum likelihood estimator (QMLE) does not function well. In order to remedy this defect, we propose the normal mixture QMLE (NM-QMLE), which is obtained from the normal mixture quasi-likelihood, and demonstrate that the NM-QMLE is consistent and asymptotically normal. Finally, we present simulation results and a real data analysis in order to illustrate our findings.  相似文献   

16.
Using the Poisson approximation to the Binomial distribution, we construct an approximate maximum likelihood estimator (MLE) for a class of chain binomial models. Our estimator proves to have properties which may make it preferable to the exact WLE.  相似文献   

17.
A general class of multivariate regression models is considered for repeated measurements with discrete and continuous outcome variables. The proposed model is based on the seemingly unrelated regression model (Zellner, 1962) and an extension of the model of Park and Woolson(1992). The regression parameters of the model are consistently estimated using the two-stage least squares method. When the out come variables are multivariate normal, the two-stage estimator reduces to Zellner’s two-stage estimator. As a special case, we consider the marginal distribution described by Liang and Zeger (1986). Under this this distributional assumption, we show that the two-stage estimator has similar asymptotic properties and comparable small sample properties to Liang and Zeger's estimator. Since the proposed approach is based on the least squares method, however, any distributional assumption is not required for variables outcome variables. As a result, the proposed estimator is more robust to the marginal distribution of outcomes.  相似文献   

18.
This article introduces a semiparametric autoregressive conditional heteroscedasticity (ARCH) model that has conditional first and second moments given by autoregressive moving average and ARCH parametric formulations but a conditional density that is assumed only to be sufficiently smooth to be approximated by a nonparametric density estimator. For several particular conditional densities, the relative efficiency of the quasi-maximum likelihood estimator is compared with maximum likelihood under correct specification. These potential efficiency gains for a fully adaptive procedure are compared in a Monte Carlo experiment with the observed gains from using the proposed semiparametric procedure, and it is found that the estimator captures a substantial proportion of the potential. The estimator is applied to daily stock returns from small firms that are found to exhibit conditional skewness and kurtosis and to the British pound to dollar exchange rate.  相似文献   

19.
We consider the semiparametric proportional hazards model for the cause-specific hazard function in analysis of competing risks data with missing cause of failure. The inverse probability weighted equation and augmented inverse probability weighted equation are proposed for estimating the regression parameters in the model, and their theoretical properties are established for inference. Simulation studies demonstrate that the augmented inverse probability weighted estimator is doubly robust and the proposed method is appropriate for practical use. The simulations also compare the proposed estimators with the multiple imputation estimator of Lu and Tsiatis (2001). The application of the proposed method is illustrated using data from a bone marrow transplant study.  相似文献   

20.
We study the properties of the quasi-maximum likelihood estimator (QMLE) and related test statistics in dynamic models that jointly parameterize conditional means and conditional covariances, when a normal log-likelihood os maximized but the assumption of normality is violated. Because the score of the normal log-likelihood has the martingale difference property when the forst two conditional moments are correctly specified, the QMLE is generally Consistent and has a limiting normal destribution. We provide easily computable formulas for asymptotic standard errors that are valid under nonnormality. Further, we show how robust LM tests for the adequacy of the jointly parameterized mean and variance can be computed from simple auxiliary regressions. An appealing feature of these robyst inference procedures is that only first derivatives of the conditional mean and variance functions are needed. A monte Carlo study indicates that the asymptotic results carry over to finite samples. Estimation of several AR and AR-GARCH time series models reveals that in most sotuations the robust test statistics compare favorably to the two standard (nonrobust) formulations of the Wald and IM tests. Also, for the GARCH models and the sample sizes analyzed here, the bias in the QMLE appears to be relatively small. An empirical application to stock return volatility illustrates the potential imprtance of computing robust statistics in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号